Statement Of Problem: The dimensional stability of alginate dental impressions is a key factor for the reliability of delayed gypsum pouring and digital scanning. However, studies of the dimensional stability of alginates with conventional methods that consider the dimensional variations of large impressions are lacking.

Purpose: The purpose of this in vitro study was to investigate and compare 2 digital methods for the analysis of dimensional stability of large impressions made with 5 different extended-pour alginates and to assess dimensional stability up to 5 days.

Material And Methods: Impressions of a simplified master maxillary model were made with Alginoplast, Blueprint, Hydrogum 5, Orthoprint, and Phase Plus and then analyzed at different time points. Digital scans of the alginate impression surfaces were obtained with a desktop scanner and analyzed by evaluating the linear measurements between reference points and by using a novel method that consists of the analysis of the entire scanned surface to evaluate the expansion and contraction of the impressions.

Results: The first method revealed that the dimensional changes did not exceed 0.5%, with the exception of Phase Plus at day 3 (-0.6 ±0.7%), and the average dimensional variation was always lower than or equal to 0.2 mm. Blueprint was the most stable material (-0.2 ±0.6%). The second method revealed dimensional variations always lower than 0.03 mm and confirmed Blueprint as the best performing material (0.001 ±0.006 mm) and Phase Plus the worst (-0.019 ±0.006 mm).

Conclusions: Both the methods used to evaluate alginate stability showed that the analyzed materials remain stable over time; the dimensional variations showed a similar trend, with differences in the absolute values depending on the applied method. Linear measurements are affected by the operator and choice of reference points; however, by evaluating the average variations of the entire structure surfaces, local variations should be minimized. The evaluation of the average variations with the second method offers the advantage of a rapid visual representation of these variations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prosdent.2020.06.022DOI Listing

Publication Analysis

Top Keywords

dimensional stability
12
dimensional variations
12
alginate impression
8
dimensional
8
large impressions
8
linear measurements
8
reference points
8
method revealed
8
revealed dimensional
8
second method
8

Similar Publications

Two-dimensional inverse double sandwich CoB: strain-induced non-magnetic to ferromagnetic transition.

Phys Chem Chem Phys

January 2025

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

A full-scale structural search was performed using density functional theory calculations and a universal structural prediction evolutionary algorithm. This produced a lowest energy two-dimensional (2D) CoB structure. The CoB-1 global minimum structure has unusual inverse double sandwich features.

View Article and Find Full Text PDF

Scaffolds Bioink for Three-Dimensional (3D) Bioprinting.

Food Sci Anim Resour

January 2025

Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea.

Rapid population growth and a corresponding increase in the demand for animal-derived proteins have led to food supply challenges and the need for alternative and sustainable meat production methods. Therefore, this study explored the importance of cell engineering technology-based three-dimensional bioprinting and bioinks, which play key roles in cultured meat production. In cultured meat production, bioinks have a significant effect on cell growth, differentiation, and mechanical stability.

View Article and Find Full Text PDF

Objective: Segmenting and reconstructing 3D models of bone tumors from 2D image data is of great significance for assisting disease diagnosis and treatment. However, due to the low distinguishability of tumors and surrounding tissues in images, existing methods lack accuracy and stability. This study proposes a U-Net model based on double dimensionality reduction and channel attention gating mechanism, namely the DCU-Net model for oncological image segmentation.

View Article and Find Full Text PDF

Phosphorothioate (PS) modifications in single-guided RNA (sgRNA) are crucial for genome editing applications using the CRISPR/Cas9 system. These modifications may enhance sgRNA stability, pharmacokinetics, and binding to targets, thereby facilitating the desired genetic alterations. Incorporating multiple PS groups at varying positions may introduce chiral centers into the sgRNA backbone, resulting in a complex mixture of constitutional- and stereoisomers that challenges current analytical capabilities for reliable identification and quantification.

View Article and Find Full Text PDF

Polydopamine/Melamine Sponge-Derived Compressible Carbon Foam for High-Performance Supercapacitors.

Langmuir

January 2025

Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China.

Electrode materials with a deformation capability are vital to the development of flexible supercapacitors. However, the preparation of porous carbons with a deformability remains challenging. Herein, a compressible carbon foam has been successfully prepared using a polydopamine/melamine sponge (PDA/MS) as the precursor material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!