We investigated the relationship between impedance parameters and skeletal muscle function in the lower extremities, as well as the effectiveness of impedance parameters in evaluating muscle quality. Lower extremity impedance of 19 healthy men (aged 23-31 years) measured using the direct segmental multi-frequency bioelectrical impedance analysis were arc-optimized using the Cole-Cole model, following which phase angle (PA), [Formula: see text], and β were estimated. Skeletal muscle function was assessed by muscle thickness, muscle intensity, and isometric knee extension force (IKEF). IKEF was positively correlated with PA (r = 0.58, p < 0.01) and β (r = 0.34, p < 0.05) was negatively correlated with [Formula: see text] (r = - 0.43, p < 0.01). Stepwise multiple regression analysis results revealed that PA, β, and [Formula: see text] were correlated with IKEF independently of muscle thickness. This study suggests that arc-optimized impedance parameters are effective for evaluating muscle quality and prediction of muscle strength.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10717475 | PMC |
http://dx.doi.org/10.1186/s12576-020-00780-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!