Visual-motor illusion (VMI) is to evoke a kinesthetic sensation by viewing images of oneself performing physical exercise while the body is at rest. Previous studies demonstrated that VMI activates the motor association brain areas; however, it is unclear whether VMI immediately alters the resting-state functional connectivity (RSFC). This study is aimed to verify whether the VMI induction changed the RSFC using functional near-infrared spectroscopy (fNIRS). The right hands of 13 healthy adults underwent illusion and observation conditions for 20 min each. Before and after each condition, RSFC was measured using fNIRS. After each condition, degree of kinesthetic illusion and a sense of body ownership measured using the Likert scale. Our results indicated that, compared with the observation condition, the degree of kinesthetic illusion and the sense of body ownership were significantly higher after the illusion condition. Compared with the observation condition, RSFC after the illusion condition significantly increased brain areas associated with kinesthetic illusion, a sense of body ownership, and motor execution. In conclusion, RSFC has become a biomarker that shows changes in brain function occurring due to VMI. VMI may be applied to the treatment of patients with stroke or orthopedic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bandc.2020.105632DOI Listing

Publication Analysis

Top Keywords

kinesthetic illusion
12
illusion sense
12
sense body
12
body ownership
12
illusion
8
visual-motor illusion
8
resting-state functional
8
functional connectivity
8
brain areas
8
condition rsfc
8

Similar Publications

Animals and humans possess an adaptive ability to rapidly estimate approximate numerosity, yet the visual mechanisms underlying this process remain poorly understood. Evidence suggests that approximate numerosity relies on segmented perceptual units modulated by grouping cues, with perceived numerosity decreasing when objects are connected by irrelevant lines, independent of low-level features. However, most studies have focused on physical objects.

View Article and Find Full Text PDF

Observations from multisensory body illusions indicate that the body representation can be adapted to changing task demands, e.g., it can be expanded to integrate external objects based on current sensorimotor experience (embodiment).

View Article and Find Full Text PDF

Illusions of self-motion (vection) can be improved by adding global visual oscillation to patterns of optic flow. Here we examined whether adding apparent visual oscillation (based on four-stroke apparent motion-4SAM) also improves vection. This apparent vertical oscillation was added to self-motion displays simulating constant velocity leftward self-motion.

View Article and Find Full Text PDF

This study delves into how various musical factors influence the experience of auditory illusions, building on Diana Deutsch's scale illusion experiments and subsequent studies. Exploring the interaction between scale mode and timbre, this study assesses their influence on auditory misperceptions, while also considering the impact of an individual's musical training and ability to discern absolute pitch. Participants were divided into nonmusicians, musicians with absolute pitch, and musicians with relative pitch, and were exposed to stimuli modified across three scale modes (tonal, dissonant, atonal) and two timbres (same, different).

View Article and Find Full Text PDF

Deceptive illusory cues can influence orthogonally directed manual length estimations.

Atten Percept Psychophys

January 2025

School of Kinesiology, Louisiana State University, 1250 Huey P. Long Field House, 50 Field House Drive, Baton Rouge, LA, 70803, USA.

We examined participants' abilities to manually estimate one of two perpendicular line segment lengths using curved point-to-point movements. Configurations involved symmetrical, unsymmetrical, and no bisection in upright and rotated orientation alterations to vertical-horizontal (V-H) illusions, where people often perceive longer vertical than horizontal segments for equal segment lengths. Participants used two orthogonally directed movements for length estimations: positively proportional (POS) - where greater fingertip displacement involved longer length estimation between configuration intersection start position and fingertip end, and negatively proportional (NEG) - where greater fingertip displacement from the screen edge start position toward configuration intersection involved a shorter length estimation between configuration intersection and fingertip end.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!