In the present study, there was evaluation of cryocapacitation-associated changes, apoptotic-like changes, deprotamination, total antioxidant capacity (TAC), and in vitro sperm functional attributes in Barbari bucks after freezing-thawing. The correlation between deprotamination and sperm functional characteristics was established. Using immunoblotting procedures, there was detection of the presence of a single 28-kDa protein band corresponding to protamine-1. The localization in the head region of the spermatozoa was further validated by an immunofluorescence test. Capacitated (B-) and acrosome-reacted (AR-) pattern spermatozoa, spermatozoa with the externalization of phosphatidylserine and a relatively lesser mitochondrial transmembrane potential, and deprotamination and DNA fragmentation was greater (P < 0.05) after freezing-thawing and indicated there were cryocapacitation- and apoptotic-like changes, respectively. Furthermore, the detection of phosphorylation of tyrosine-containing proteins with use of immunoblotting and immunofluorescence procedures confirmed there were cryocapacitation-like changes in the buck spermatozoa after freezing-thawing. Total antioxidant capacity (TAC), in vitro thermal resistance response, Vanguard distance, progesterone sensitivity, and in vitro capacitation response were less (P < 0.05) in the spermatozoa after freezing-thawing compared with spermatozoa after initial dilution and equilibration. Deprotamination (chromomycin A3-positive cells, CMA3+) and DNA fragmentation (TUNEL+ve) were positively correlated with B- and AR-pattern spermatozoa, while other values for other variables were negatively correlated. In conclusion, the results of this study indicated there was protamine-1 in buck spermatozoa and after freezing-thawing there was a loss of protamine-1 combined with cryocapacitation-associated changes and apoptotic-like changes in buck spermatozoa. Spermatozoa deprotamination might be attributed to increased DNA fragmentation, resulting in compromised fertilizing capacity of buck spermatozoa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.anireprosci.2020.106628 | DOI Listing |
Andrologia
February 2022
Sperm Signalling Laboratory, Department of Veterinary Physiology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa VigyanViswavidyalaya Evam Go Anusandhan Sansthan, Mathura, Uttar Pradesh, India.
In this study, the cryoprotective potential of natural antioxidant curcumin in Hariana bull semen was evaluated as an additive in a tris-based extender with the assessment of motility and motion parameters of spermatozoa, membrane intactness, progesterone-receptor binding, protein carbonyl content, cervical mucus penetration, cryocapacitation-associated and apoptotic-like changes. The collected ejaculates were divided into five groups in the tris-based extender (control without curcumin-I, 10 µM-II, 25 µM-III, 50 µM-IV and 75µM-V) and were cryopreserved. Groups II and III containing 10 and 25 µM curcumin substantially (p < .
View Article and Find Full Text PDFAnim Reprod Sci
December 2020
Department of Biochemistry, U.P. Pandit Deendayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, 281001, Uttar Pradesh, India; College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, 281001, Uttar Pradesh, India.
In the present study, there was evaluation of cryocapacitation-associated changes, apoptotic-like changes, deprotamination, total antioxidant capacity (TAC), and in vitro sperm functional attributes in Barbari bucks after freezing-thawing. The correlation between deprotamination and sperm functional characteristics was established. Using immunoblotting procedures, there was detection of the presence of a single 28-kDa protein band corresponding to protamine-1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!