Myeloid-related protein 8/14 (MRP8/14) participates in various inflammatory responses, however, its effect on macrophage efferocytosis remains unclear. Here, we demonstrate that MRP8/14 significantly inhibits the efferocytosis of apoptotic thymocytes by mouse bone marrow-derived macrophages (BMDMs), which later proves to be associated with the receptor for advanced glycation end products (RAGE) or for reducing the expression of growth arrest-specific protein 6 and milk fat globule epidermal growth factor 8, independent of RAGE. Furthermore, MRP8/14 promotes polarization of BMDMs from the M - to M -like phenotype by upregulating expression of M -related surface receptor proteins and signature M -marker genes and by downregulating signature M -marker gene expression, which depends on Toll-like receptor 4 and p38 mitogen-activated protein kinase/nuclear factor κB pathways. Thus, we report a significant inhibitory effect of MRP8/14 on macrophage efferocytosis and MRP8/14-mediated phenotypic polarization, which may be helpful in developing novel therapeutic strategies leading to inflammation resolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.29944 | DOI Listing |
Adv Healthc Mater
December 2024
State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China.
During acute respiratory distress syndrome (ARDS), delayed apoptosis of neutrophils and impaired efferocytosis of macrophages constitute two critical limiting steps, leading to secondary inflammatory storm and posing a significant threat to human health. However, due to the failure of previous single target-centric treatments to effectively address these two limiting steps in controlling the inflammatory storm, no available therapies are approved for ARDS treatment. Herein, inspired by spontaneous inflammation resolution, two kinds of Apoptosis and Efferocytosis Restored Nanoparticles (AER NPs) are proposed to overcome these two limiting steps for counteracting severe inflammatory storm.
View Article and Find Full Text PDFFront Cardiovasc Med
December 2024
Department of Cardiology, The First Hospital of Nanchang, Nanchang, China.
Background: Macrophage polarization and efferocytosis have been implicated in CHD. However, the underlying mechanisms remain elusive. This study aimed to identify CHD-associated biomarkers using transcriptomic data.
View Article and Find Full Text PDFJ Cell Mol Med
December 2024
Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.
Macrophage efferocytosis (clearance of apoptotic cells) is crucial for tissue homeostasis and wound repair, where macrophages secrete factors that promote resolution of inflammation and regenerative signalling. This study examined the role of efferocytic macrophage-associated CCL2 secretion, its influence on mesenchymal stem/progenitor cell (MSPC) chemotaxis, and in vivo cell recruitment using Ccr2 (KO) mice with disrupted CCL2 receptor signalling in two regenerative models: ossicle implants and ulnar stress fractures. Single cell RNA sequencing and PCR validation indicated that efferocytosis of various apoptotic cells at bone injury sites (osteoblasts, pre-osteoblasts, MSPC) upregulated CCL2.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
Macrophages are versatile myeloid leukocytes with flexible cellular states to perform diverse tissue functions beyond immunity. This plasticity is however often hijacked by diseases to promote pathology. Scanning kinetics of macrophage states by single-cell transcriptomics and flow cytometry, we observed atopic dermatitis drastically exhausted a resident subtype S1.
View Article and Find Full Text PDFBrain Pathol
December 2024
Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
Brain injury represents the leading cause of mortality and disability after cardiopulmonary resuscitation (CPR) from cardiac arrest (CA), in which the accumulation of dying cells aggravate tissue injury by releasing proinflammatory intracellular components. Microglia play an essential role in maintaining brain homeostasis via milk fat globule epidermal growth factor 8 (MFG-E8)-opsonized efferocytosis, the engulfment of dying cells and debris. This study investigates whether potentiating microglia efferocytosis by MFG-E8 provides neuroprotection after CA/CPR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!