This work aims to synthesize akaganeite nanoparticles (AKNPs) by using microwave and use them to adsorb Congo red dye (CR) from the aqueous solution. The AKNPs with an average particle size of about 50 nm in width and 100 nm in length could be fabricated in 20 min. The effects of pH, CR initial concentration, adsorption time, and adsorbent dosage on the adsorption process were investigated and the artificial neural network (ANN) was used to analyze the adsorption data. The various ANN structures were examined in training the data to find the optimal model. The structure with training function, TRAINLM; adaptation learning function, LARNGDM; transfer function, LOGSIG (in hidden layer) and PURELIN (in output layer); and 10 neutrons in hidden layer having the highest correlation (R = 0.996) and the lowest MSE (4.405) is the optimal ANN structure. The consistency between the experimental data and the data predicted by the ANN model showed that the behavior of the adsorption process of CR onto AKNPs under different conditions can be estimated by the ANN model. The adsorption kinetics was studied by fitting the data into pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models. The results showed that the adsorption kinetics obeyed the pseudo-second-order model and governed by several steps. The adsorption isotherms at the different temperatures were studied by fitting the data to Langmuir, Freundlich, and Temkin isotherm models. The R obtained from the Langmuir model was above 0.9 and the highest value in three of four temperatures, suggesting that the adsorption isotherms were the best fit to the Langmuir model and the maximum adsorption capacity was estimated to be more than 150 mg/g. Thermodynamic studies suggested that the adsorption of CR onto AKNPs was a spontaneous and endothermic process and physicochemical adsorption. The obtained results indicated the potential application of microwave-synthesize AKNPs for removing organic dyes from aqueous solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-020-10633-2 | DOI Listing |
Sci Rep
January 2025
College of Mechanical Engineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, Zhejiang Province, China.
To observe the chemical mechanical polishing (CMP) process at the atomic scale, reactive force field molecular dynamics (ReaxFF-MD) was employed to simulate the polishing of 6 H-SiC under three conditions: dry, pure water, and HO solution. This study examined the reactants on the surface of 6 H-SiC during the reaction in the HO solution, along with the dissociation and adsorption processes of HO and water molecules. The mechanisms for atom removal during the CMP process were elucidated.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
Department of Chemistry, Laboratory of Advance Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, China. Electronic address:
Hierarchical organization is prevalent in nature, yet the artificial construction of hierarchical materials featuring asymmetric structures remains a big challenge. Herein, we report a stress-induced self-assembly strategy for the synthesis of hierarchically twisted stripe arrays (HTSAs) with mesoporous structures. A soft and thin mesostructured film assembled by micelles and TiO oligomers is the prerequisite.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China. Electronic address:
The carboxymethyl chitosan (CMCS)-based porous beads are still criticized for their limited number of binding sites, which impairs their efficacy in removing aqueous pollutants. To overcome this challenge, this work introduces the production of covalently crosslinked CMCS-based beads containing SiO and poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS). The porous composite beads not only possess remarkable stability under acidic conditions, but also have abundant active binding sites for adsorption.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Tea Plant Biology and Utilization, Joint Research Center for Food Nutrition and Health of IHM and Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Anhui Agricultural University, Hefei 230036, PR China; College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, PR China. Electronic address:
To mitigate the risk associated with water-soluble fluoride in tea and to have less influence on the contents of tea infusion, a highly selective lanthanum modified silk fibroin (SF) and polyvinyl alcohol (PVA) composite film (SF/PVA-La) was prepared to remove fluoride from brick tea infusion. Notably, SF/PVA-La could remove about 48 % of the fluoride from in brick tea infusion within 30 min. Importantly, the reduction in total tea polyphenols in brick tea did not exceed 10 %, and the reduction in caffeine was only 0.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest, Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address:
This study investigates the mixing effects on the enzymatic hydrolysis of microcrystalline cellulose (MCC) and dilute-acid pretreated corncob substrates under high-solid conditions. Enzymatic hydrolysis experiments were conducted to assess cellulose conversion rates under varying mixing conditions (0, 50, 150, and 250 rpm) and solids loadings (5 %, 15 %, 25 %, and 35 %, w/v), and distinct physicochemical properties of the substrates were characterized. Additionally, the role of mixing conditions and solid loadings on cellulose hydrolysis kinetics and enzyme adsorption on both substrates and lignin were elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!