Extracellular vesicles (EVs), such as exosomes, have garnered increasing interest because of their potential clinical applications that range from diagnostics to therapeutics. The development of an automated and reproducible EV purification platform would therefore aid the introduction of EV biomarkers and therapies into the clinic. Here, we demonstrate that K8- as well as K-16 peptides (containing 8 and 16 lysine residues with dissociation constants of 102 nM and 11.6 nM for phosphatidylserine, respectively) immobilized on magnetic beads can capture small EVs (< 0.2 µm) from culture supernatants of MCF7 human breast cancer cells. Importantly, the bound EVs could be dissociated from the beads under mild conditions (e.g. 0.5 M NaCl), and the isolated EVs had the typical shapes of EVs under SEM and TEM with a mean particle size of 99 nm. Using the peptide-immobilized beads, we adapted a pre-existing bench top instrument for magnetic separation to perform automated EV purification with higher purity and yield than that obtained using the standard ultracentrifugation method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603496 | PMC |
http://dx.doi.org/10.1038/s41598-020-75561-0 | DOI Listing |
Nano Lett
January 2025
Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Tomtebodavägen 23, 17165 Solna, Sweden.
Single particle profiling (SPP) is a unique methodology to study nanoscale bioparticles such as liposomes, lipid nanoparticles, extracellular vesicles, and lipoproteins in a single particle and high throughput manner. The initial version requires the single photon counting modules for data acquisition, which limits its adoptability. Here, we present imaging-based SPP (iSPP) that can be performed by imaging a spot over time in the common imaging mode with confocal detectors.
View Article and Find Full Text PDFCurr Alzheimer Res
January 2025
Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
Extracellular vesicles (EVs) are nano-sized membranous particles that are secreted by various cell types and play a critical role in intercellular communication. Their unique properties and remarkable ability to deliver bioactive cargo to target cells have made them promising tools in the treatment of various diseases, including Alzheimer's disease (AD). AD is a devastating neurodegenerative disease characterized by progressive cognitive decline and neuropathological hallmarks, such as amyloid-beta plaques and neurofibrillary tangles.
View Article and Find Full Text PDFJBMR Plus
February 2025
Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil.
Mineralizing cells release a special class of extracellular vesicles known as matrix vesicles (MV), crucial for bone mineralization. Following their release, MV anchor to the extracellular matrix (ECM), where their highly specialized enzymatic machinery facilitates the formation of seed mineral within the MV's lumen, subsequently releasing it onto the ECM. However, how MV propagate mineral onto the collagenous ECM remains unclear.
View Article and Find Full Text PDFJ Parasitol Res
January 2025
Parasitology and Mycology Center, Adolfo Lutz Institute, Sao Paulo, Brazil.
Visceral leishmaniasis (VL) is a zoonotic disease in which dogs are the main reservoirs. Until now, the serological tests do not present satisfactory sensitivity for diagnosis of these hosts. One of the functions of extracellular vesicles (EVs) is related to immunological host response.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
is a prevalent fungal pathogen responsible for infections in humans. As described recently, nanometer-sized extracellular vesicles (EVs) produced by play a crucial role in the pathogenesis of infection by facilitating host inflammatory responses and intercellular communication. This study investigates the functional properties of EVs released by biofilms formed by two strains-3147 (ATCC 10231) and SC5314-in eliciting host responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!