Most animal model studies of autism spectrum disorder (ASD) have been performed in males, which may be a reflex of the 3-times higher prevalence in boys than in girls. For this reason, little is known about the mechanisms underlying disease progression in females, and nothing is known about potential associations between microglial changes in the lateral septum (LS) and adult female cognition. Prenatal exposure to valproic acid (VPA) in mice has been widely used as an experimental model of autism-like behaviors associated with cellular changes. However, no study has reported the influence of VPA exposure in utero and its consequences on limbic system-dependent tasks or the microglial response in the LS in adult female mice. We compared the exploratory activity and risk assessment in novel environments of BALB/c control mice to mice exposed in utero to VPA and estimated the total number of microglia in the LS using an optical fractionator. On day 12.5 of pregnancy, females received diluted VPA or saline by gavage. After weaning, VPA exposed or control pups were separately housed in standard laboratory cages. At 5 months of age, all mice underwent behavioral testing and their brain sections were immunolabelled using IBA-1 antibody. In the open field test, VPA group showed a greater distance traveled, which was accompanied by less immobility, less time spent on the periphery and a greater number, crossed lines. Similar findings were found in the elevated plus maze test, where VPA mice traveled greater distances, immobility was significantly higher than that of control and VPA group spent less time on the closed arms of apparatus. Stereological analysis demonstrated higher microglial total number and density in the LS of VPA mice, as the cell count was greater, but the volume was similar. Therefore, we suggest that an increase in microglia in the LS may be part of the cellular changes associated with behavioral dysfunction in the VPA model of ASD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchemneu.2020.101875 | DOI Listing |
Front Neural Circuits
January 2025
Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan.
Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social interaction and communication, along with restricted and repetitive behaviors. Both genetic and environmental factors contribute to ASD, with prenatal exposure to valproic acid (VPA) and nicotine being linked to increased risk. Impaired adult hippocampal neurogenesis, particularly in the ventral region, is thought to play a role in the social deficits observed in ASD.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
PLoS Genet
December 2024
Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America.
A tri-protein complex containing NICD, RBPj and MAML1 binds DNA as monomer or as cooperative dimers to regulate transcription. Mice expressing Notch dimerization-deficient alleles (NDD) of Notch1 and Notch2 are sensitized to environmental insults but otherwise develop and age normally. Transcriptomic analysis of colonic spheroids uncovered no evidence of dimer-dependent target gene miss-regulation, confirmed impaired stem cell maintenance in-vitro, and discovered an elevated signature of epithelial innate immune response to symbionts, a likely underlying cause for heightened sensitivity in NDD mice.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
National Nanotechnology Research Center (UNAM) Bilkent University, Cankaya, Ankara, 06800, Türkiye.
In the existing development of extensive drug screening models, 3D cell cultures outshine conventional 2D monolayer cells by closely imitating the in vivo tumor microenvironment. This makes 3D culture a more physiologically relevant and convenient system in the regime of preclinical drug testing. In the nanomedicinal world, nanoconjugates as nanocarriers are largely hunted due to their capability of precisely binding to target cells and distributing essential dosages of therapeutic drugs with enhanced safety profiles.
View Article and Find Full Text PDFTransl Psychiatry
December 2024
Departments of Physiology and Psychiatry University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!