Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Toluene-diisocyanate (TDI) is one of the main causes of occupational asthma. To study the role of autophagy in TDI-induced airway inflammation and airway remodeling in bronchial airway epithelial (16HBE) cells. We treated 16HBE cells with TDI-human serum albumin (TDI-HSA) conjugate to observe reactive oxygen species (ROS) release, autophagy activation, airway inflammation and airway remodeling. 3-Methyladenine (3-MA) and Rapamycin (Rapa) intervention were used to explore the effects of autophagy on inflammatory response and protein expression related to airway remodeling in 16HBE cells treated with TDI-HSA. Experimental results suggested that various concentrations of TDI-HSA (0, 40, 80 and 120 μg/mL) increased the release of ROS and the expression of Nrf2, activated autophagy and increased the expression of AMPK, Beclin-1, LC3 and decreased the expression of p62, promoted the levels of IL-5, IL-6 and IL-8 in 16HBE cells. Results also showed that E-cadherin expression decreased but an increase was observed in α-SMA and MMP-9 in the TDI-HSA group. The treatment of TDI-HSA combined with Rapa aggravated the above reaction whereas the inverse was true for TDI-HSA combined with 3-MA. These results indicated that autophagy is involved in TDI-induced airway inflammation and airway remodeling as a positive regulatory mechanism, inhibiting autophagy can significantly alleviate the TDI-induced inflammatory response and attenuate airway remodeling protein expression in 16HBE cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2020.105040 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!