Patients with sepsis and sepsis-related complications have a high mortality. Endothelial cell dysfunction plays a central role in sepsis pathophysiological process. In sepsis patients, endothelial cell apoptosis is associated with intracellular calcium overload. Multiple functions in the apoptotic process have been found to be regulated by calcium signaling. Our previous work had proved that LPS-induced cell injury was associated with store-operated calcium (SOC) entry mediated by stromal interaction molecule-1 (STIM 1) in Human umbilical vein endothelial cells (HUVEC), but the underlying molecular mechanism has not been adequately defined. Here we report that the LPS-induced cell injury is related to the calcium overload in HUVEC. SOC entry mediated by calcium release-activated calcium modulator (Orai) 1 and transient receptor potential canonical (TRPC) 1 was associated with LPS-induced calcium overload and cell apoptosis. Bruton's tyrosine kinase (Btk)/Phospholipase C(PLC) γ/inositol 1,4,5-triphosphate receptor (IPR) played a major role in regulating calcium overload in LPS-induced HUVEC. Knockdown of Btk markedly inhibited the expressions of Orai 1 and its downstream molecule IPR but not that of TRPC1 in LPS-induced HUVEC. In mice, knockdown of Btk and Orai 1 inhibited LPS-induced calcium overload, pulmonary vascular endothelial cell (VEC) injury and acute lung injury. These findings demonstrated that Btk acts as a regulator of calcium-dependent signaling, especially in the Orai 1-mediated SOC entry of the LPS-induced VEC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2020.107039 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Ultrasound, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400010, China.
: Photodynamic therapy (PDT) has emerged as a promising treatment for cancer, primarily due to its ability to generate reactive oxygen species (ROS) that directly induce tumor cell death. However, the hypoxic microenvironment commonly found within tumors poses a significant challenge by inhibiting ROS production. This study aims to investigate the effect of improving tumor hypoxia on enhancing PDT.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:
Calcium-based nanomaterials-mediated Ca overload-induced pyroptosis and its application in tumor therapy have received considerable attention. However, the calcium buffering capacity of tumor cells can maintain mitochondrial calcium homeostasis, so it is important to effectively disrupt this homeostasis to activate pyroptosis. Here, a nano-modulator CUR@CaCO-PArg@HA (CCAH) was developed to regulate calcium overload in multiple channels and activate pyroptosis.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Medicine, Linyi University, Linyi 276005, China.
The multiple enzymatic properties of the Au-modified metal-organic framework (Au-MOFs) have made it a functional catalytic system for antitumor treatment. However, in the face of insufficient catalytic substrates in tumor tissue, it is still impossible to achieve efficient treatment of tumors. Herein, Au-MOFs loaded with hyaluronic acid (HA)-modified calcium peroxide nanoparticles (CaO NPs) were used to construct a nanozyme (Au-MOF/CaO/HA) for substrate self-supplied and parallel catalytic/calcium-overload-mediated therapy of cancer.
View Article and Find Full Text PDFCurr Probl Cardiol
January 2025
Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China. Electronic address:
Atrial fibrillation (AF) is tightly linked to mitochondrial dysfunction, calcium (Ca²⁺) imbalance, and oxidative stress. Mitochondrial Ca²⁺ is essential for regulating metabolic enzymes, maintaining the tricarboxylic acid (TCA) cycle, supporting the electron transport chain (ETC), and producing ATP. Additionally, Ca²⁺ modulates oxidative balance by regulating antioxidant enzymes and reactive oxygen species (ROS) clearance.
View Article and Find Full Text PDFFront Med
January 2025
Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China.
Diabetic cardiomyopathy (DCM) is a medical condition characterized by cardiac remodeling and dysfunction in individuals with diabetes mellitus. Sarcoplasmic reticulum (SR) and mitochondrial Ca overload in cardiomyocytes have been recognized as biological hallmarks in DCM; however, the specific factors underlying these abnormalities remain largely unknown. In this study, we aimed to investigate the role of a cardiac-specific long noncoding RNA, D830005E20Rik (Trdn-as), in DCM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!