Natural attenuation in acid mine drainage (AMD) due to biological iron and arsenic oxidation offers a promising strategy to treat As-rich AMD in passive bioreactors. A reactive transport model is developed in order to identify the main controlling factors. It simulates batch and flow-through experiments that reproduce natural attenuation in a high-As AMD. The 2-D model couples second-order microbial kinetics (Fe- and As- oxidation) and geochemical reactions to hydrodynamic transport. Oxidation only occurrs in the biofilm with an oxygen transfer from the air through the water column. The model correctly simulates the Fe(II)-Fe(III) and As(III)-As(V) concentrations in the outlet waters and the precipitates, over hydraulic retention times from 30 min to 800 min. It confirms that the natural attenuation at 20 °C is driven by the fast Fe(II) oxidation and slow As(III) oxidation that favors arsenite trapping by schwertmannite over amorphous ferric arsenate (AFA) formation. The localization of iron oxidation in the biofilm limits the attenuation of arsenic and iron as the water column height increases. The change in the composition of the bacterial iron-oxidizer community of the biofilm at the lowest pH boundary seems to control the Fe(II) oxidation kinetic rate besides the bacterial concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.124133DOI Listing

Publication Analysis

Top Keywords

natural attenuation
16
microbial kinetics
8
attenuation arsenic
8
arsenic iron
8
acid mine
8
mine drainage
8
water column
8
feii oxidation
8
oxidation
7
attenuation
5

Similar Publications

Bufalin Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Macrophage Pyroptosis via P62 Pathway.

J Cardiovasc Transl Res

December 2024

Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.

Bufalin, which is isolated from toad venom, exerts positive effects on hearts under pathological circumstance. We aimed to investigate the effects and mechanisms of bufalin on myocardial I/R injury. In vivo, bufalin ameliorated myocardial I/R injury, which characteristics with better ejection function, decreased infarct size and less apoptosis.

View Article and Find Full Text PDF

Sepsis is defined as a dysfunctional, life-threatening response to infection leading to multiorgan dysfunction and failure. During the past decade, studies have highlighted the relationship between sepsis and aging. However, the role of aging-related mechanisms in the progression and prognosis of sepsis remains unclear.

View Article and Find Full Text PDF

Omentin-1 mitigates non-alcoholic fatty liver disease by preserving autophagy through AMPKα/mTOR signaling pathway.

Sci Rep

December 2024

Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China.

Adipose tissue-derived adipokines facilitate inter-organ communication between adipose tissue and other organs. Omentin-1, an adipokine, has been implicated in the regulation of glucose and insulin metabolism. However, limited knowledge exists regarding the regulatory impact of endogenous omentin-1 on hepatic steatosis.

View Article and Find Full Text PDF

Background: Evidence has revealed that oestrogen deprivation-induced osteolysis is microbiota-dependent and can be treated by probiotics. However, the underlying mechanism require further investigation. This study aims to provide additional evidence supporting the use of probiotics as an adjuvant treatment and to explore the pathophysiology of oestrogen-deprived osteolysis.

View Article and Find Full Text PDF

Avian pathogenic Escherichia coli (APEC) is a significant pathogen infecting poultry that is responsible for high mortality, morbidity and severe economic losses to the poultry industry globally, posing a substantial risk to the health of poultry. APEC encounters reactive oxygen species (ROS) during the infection process and thus has evolved antioxidant defense mechanisms to protect against oxidative damage. The imbalance of ROS production and antioxidant defenses is known as oxidative stress, which results in oxidative damage to proteins, lipids and DNA, and even bacterial cell death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!