Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A multilayered iron oxide/reduced graphene oxide (ION-RGO) nanocomposite electrode is reported for the voltammetric sensing of bisphenol-A (BPA). Structural characterizations reveal the nanocomposite features RGO sheets decorated with nanometric spherical ION in a mixture of maghemite and magnetite phases. ITO substrate modified with the ION-RGO multilayered film exhibits strong electrocatalytic effect toward BPA oxidation, which is made possible by Fe(III) catalysts generated at the ION's surface after scanning the electrode potential from below 0 V (vs Ag/AgCl) and followed by the RGO phase conducting the transferred electrons. Under optimized differential pulse voltammetry conditions, the proposed sensor shows three linear working ranges 0.09-1.17 (r = 0.999), 1.17-3.81 (r = 0.995) and 3.81-8.20 (r = 0.998), with the highest sensitivity equaling 7.76 μA cm/μmol L and the lowest limit of detection of 15 nmol L. A single electrode can be used for at least twenty consecutive runs loosing less than 15% of sensitivity, whereas electrodes fabricated in different bacthes exhibit almost identical perfomances. Determination of BPA in a thermal paper sample shows no difference (at 95% confidence level) between the proposed sensor and HPLC/UV. The sensor is neither influenced by the matrix composition nor by other emerging contaminants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.142985 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!