Electrolytic manganese anode slag (EMAS) is the waste residue produced by electrolytic manganese metal industry. At present, no mature recycling system has been established, which causes a waste of resources and threatens the environment. Therefore, the resource utilization of EMAS has attracted increased attention. In this paper, the in-situ resource utilization of EMAS can be realized by pickling treatment was reported. Specifically, EMAS after pickling treatment (PEMAS) was first used as catalyst to activate PMS to degrade tetrachlorophenol (4-CP). Pickling could remove the inert inorganic components on EMAS and increase the specific surface area, pore volume and Mn distribution of the catalyst, thus improving the catalytic performance of the catalyst. Under the conditions of 4-CP of 40 ppm, PMS of 1 mM and PEMAS of 0.3 g L, 85% of 4-CP could be degraded within 50 min. Mechanism studies proved that the main active species were O and O. Some O contributed to the generation of O and some O directly contributed to the degradation of 4-CP. During the reaction, the valence state of Mn transformed between Mn(III)/Mn(IV) and Mn(II)/Mn(III) and kept the cycle. Moreover, PEMAS/PMS system exhibited excellent independence of the solution pH, resistance to the versatile inorganic ions and background organic matters, and stability of recycling. In a word, this study has achieved the resource utilization of EMAS and the goal of treating waste with waste, which is a win-win strategy of economic and environmental benefits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.143120 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!