Rhizosphere, formed via the input of root exudates, is one of the most dynamic biological interfaces on earth. Investigation of carbon dynamics in rhizosphere is thus crucial for the understanding of soil biogeochemical processes. Herein, synchrotron radiation-based Fourier transform infrared (SR-FTIR) combined with two dimensional correlation spectroscopy (2D-COS) was used to probe and identify the changes of chemical constituents and functional groups of organic carbon on the root/soil interface in rhizosphere of two plants [Leptochloa chinensis (L.) Nees and Cyperus rotundus L.]. The SR-FTIR results showed obviously heterogeneous distributions of functional groups in rhizosphere at microscale. Specifically, regardless of plant species, about 20-30 μm regions in rhizosphere can be affected by root activities. The peak area ratios of organic-OH and aliphatic-C to clay-OH on the root/soil interface in rhizosphere were 4.04-8.48 times higher than that in bulk soil, providing direct evidence of the organic carbon storage due to root activities. 2D-COS analysis suggested that the root activities induced the first adsorption or sequestration of newly organics (3350 cm) on the root/soil interface, followed by the destruction of clay-OH (3621 or 860 cm), leading to the release of mineral associated organics and nutrients (e.g., 1510 and 1150 cm) from the soil. These results can enlarge our knowledge on the concentration, distribution, and dynamics of organic carbon in rhizosphere at the microscale level and also the environmental behaviors and fate of other elements and contaminants that associated with organic carbon in rhizosphere. CAPSULE: SR-FTIR combined with 2D-COS can explore the distribution and dynamics of organic carbon on the root/soil interface in rhizosphere.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.143078 | DOI Listing |
Sci Rep
January 2025
Climate and Environmental Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
Abiotic H and hydrocarbons are found in fluids discharged from ultramafic-hosted hydrothermal vents. Beneath the hydrothermal vents, abiotic H and hydrocarbons can be formed by serpentinization reactions and Fischer-Tropsch-type hydrocarbon-forming reactions, respectively, over ultramafic rocks. However, the source rocks that form abiotic H and hydrocarbons may extend to broader subsurface rocks.
View Article and Find Full Text PDFNat Commun
January 2025
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, PR China.
Regulating carbon hybridization states lies at the heart of engineering carbon materials with tailored properties but orchestrating the sequential transition across three states has remained elusive. Here, we visiualize stepwise evolution in carbon hybridizations from sp³ to sp² and to sp states via dehydrogenation and elimination reactions of methylcyano-functionalized molecules on surfaces. Utilizing scanning probing microscopy, we distinguish three distinct carbon-carbon bond types within polymers induced by annealing at elevated temperatures.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, University of Toronto, Toronto, ON, Canada.
As the global quest for sustainable energy keeps rising, exploring novel efficient and practical photocatalysts remains a research and industrial urge. Particularly, metal organic frameworks were proven to contribute to various stages of the carbon cycle, from CO capture to its conversion. Herein, we report the photo-methanation activity of three isostructural, nickel-based metal organic frameworks incorporating additional niobium, iron, and aluminum sites, having demonstrated exceptional CO capture abilities from thin air in previous reports.
View Article and Find Full Text PDFBioresour Technol
January 2025
Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China. Electronic address:
Currently few efficient decentralized composting reactors have been developed, and there is also little exploration into their comprehensive environmental impact and carbon emissions. This study developed a continuous pulse alternating ventilation composting pilot device, SC-PAVCR. Results demonstrated that SC-PAVCR effectively maintained the thermophilic phase during the 120-day operation period.
View Article and Find Full Text PDFBioresour Technol
January 2025
School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China. Electronic address:
Organic carbon can influence nitrogen removal during the anaerobic ammonia oxidation (anammox) process. Propionate, a common organic compound in pretreated wastewater, its impacts on mixotrophic anammox bacteria and the underlying mechanisms have not been fully elucidated. This study investigated the core metabolism and shift in behavior patterns of mixotrophic Candidatus Brocadia sapporoensis (AMXB) under long-term propionate exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!