AI Article Synopsis

  • Arsenic and fluoride are toxicants that can affect organisms including humans, and their combined effects on the brain are complex and require further study.
  • The research focused on female zebrafish exposed to environmentally relevant concentrations of these substances over various time periods, revealing less toxicity in co-exposure compared to individual exposure.
  • The study found that while there was stress-induced gene activation, there was no significant indication of cell death, suggesting that arsenic and fluoride might have an antagonistic effect in the brain, warranting more in-depth research.

Article Abstract

Arsenic and fluoride are two naturally occurring toxicants to which various organisms including a major part of the human populations are co-exposed to. However, interactions between them inside body are quite complicated and needs proper evaluation. Inconclusive reports regarding their combined effects on brain prompted us to conduct this study where we investigated their individual as well as combined effects on female zebrafish brain at environmentally relevant concentrations (50 μgL arsenic trioxide and 15 mgL sodium fluoride) after different time intervals (15, 30 and 60 days). Persistent near-basal level of GSH, least increased MDA content and catalase activity portrayed arsenic and fluoride co-exposure as less toxic which was corroborated with far less damage caused in the histoarchitecture of optic tectum region in midbrain. Stress-responsive genes viz., Nrf2 and Hsp70 were overexpressed after individual as well as combined exposures, indicating a common cellular response to combat the formed oxidative stresses. Biphasic response of AChE upon individual exposure confirmed their neurotoxic effects too. Expression profile of p53 (unaltered), Bax (lower or near-basal) and Bcl2 (comparatively higher), along with absence of DNA fragmentation indicated no induction of apoptosis in the co-exposed group. Tissue accumulation of arsenic and fluoride was significantly less in the brain of co-exposed zebrafish when compared to their individual exposures. This preliminary study indicates an antagonistic effect of these two toxicants in zebrafish brain and needs further studies involving oxidative stress independent markers to understand the detailed molecular mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.128678DOI Listing

Publication Analysis

Top Keywords

arsenic fluoride
16
environmentally relevant
8
relevant concentrations
8
combined effects
8
individual well
8
well combined
8
zebrafish brain
8
fluoride
5
brain
5
combined
4

Similar Publications

The hydrodynamics, water temperature, and water quality model for the Dan River and Renzhuang Reservoir continuum were developed using field monitoring data and the Environmental Fluid Dynamics Code (EFDC). An in-situ water discharge experiment enabled the calculation of water propagation time using a simulated flood progression method and the hydrodynamics module of EFDC. Based on these model results, degradation coefficients for chemical oxygen demand, biochemical oxygen demand, nitrogen (N), phosphorus (P), fluoride, arsenic were determined, revealing significantly higher values when the wetland barrage was opening.

View Article and Find Full Text PDF

Groundwater pollution has become a global challenge, posing significant threats to human health and ecological environments. Machine learning, with its superior ability to capture non-linear relationships in data, has shown significant potential in addressing groundwater pollution issues. This review presents a comprehensive bibliometric analysis of 1462 articles published between 2000 and 2023, offering an overview of the current state of research, analyzing development trends, and suggesting future directions.

View Article and Find Full Text PDF

The current study investigates groundwater contamination in Darrang district, situated in the flood-prone Brahmaputra Valley. This research evaluates the concentrations and geospatial distributions of iron, fluoride, and arsenic in groundwater samples (n = 347) and assesses their potential ecotoxicological risks to human health. Multivariate statistical techniques were used to investigate the sources and the mobilization mechanism of the contaminants in the aquifer system.

View Article and Find Full Text PDF

Chronic exposure to inorganic arsenic (iAs) and fluoride (F) affect gut health and potentially damage organs. The present study investigates the interplay between gut bacteria and oxidative stress (measured by MDA level, GSH level, catalase activity, Nrf2 translocation and expression) in zebrafish exposed to F (NaF 15 ppm) and As (AsO 50 ppb) alone or in combination. Combined exposure to As and F reduced gut bacterial alteration and imposed less oxidative stress compared to F- exposure alone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!