Development and external validation of a nomogram for predicting the effect of tumor size on survival of patients with perihilar cholangiocarcinoma.

BMC Cancer

Key Laboratory on Living Donor Transplantation, Ministry of Health, Department of liver surgery, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.

Published: October 2020

Background: The effect of tumor size on account of long-term survival results in perihilar cholangiocarcinoma (PCCA) patients has remained a controversial debate. It is urgent necessary to identify the optimal cutoff value of tumor size in PCCA and integrate tumor size with other prognostic factors into a nomogram to improve the predictive accuracy of prognosis of patients with PCCA.

Methods: Three hundred sixty-three PCCA patients underwent surgical resection were extracted from the Surveillance, Epidemiology and End Results (SEER) database. X-tile program was used to identify the optimal cutoff value of tumor size. A nomogram including tumor size was established to predict 1-, 3- and 5-year cancer-specific survival (CSS) based on the independent risk factors chosen by Kaplan-Meier methods and multivariable cox regression models. The precision of the nomogram for predicting survival was validated internally and externally.

Results: PCCA patients underwent surgical resection were classified into 1-19 mm, 20-33 mm and ≥ 34 mm subgroups based on the optimal cutoff for tumor size in terms of CSS. And we noticed that more larger tumor size group had worse tumor grade, advanced T stage, more positive regional lymph nodes and more frequent vascular invasion. The nomogram according to the independent factors was well calibrated and displayed better discrimination power than 7th Tumor-Node-Metastasis (TNM) stage systems.

Conclusions: The results demonstrated that the larger tumor size of PCCA was, the worse survival would be. The proposed nomogram, which outperforms the conventional TNM staging system, showed relatively good performance and could be considered as convenient individualized predictive tool for prognosis of PCCA patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596930PMC
http://dx.doi.org/10.1186/s12885-020-07501-0DOI Listing

Publication Analysis

Top Keywords

tumor size
36
pcca patients
16
optimal cutoff
12
cutoff tumor
12
tumor
10
size
9
nomogram predicting
8
perihilar cholangiocarcinoma
8
identify optimal
8
size pcca
8

Similar Publications

Manual segmentation of lesions, required for radiotherapy planning and follow-up, is time-consuming and error-prone. Automatic detection and segmentation can assist radiologists in these tasks. This work explores the automated detection and segmentation of brain metastases (BMs) in longitudinal MRIs.

View Article and Find Full Text PDF

Patients with recurrent high-grade glioma (rHGG) have a poor prognosis with median progression-free survival (PFS) of <7 months. Responses to treatment are heterogenous, suggesting a clinical need for prognostic models. Bayesian data analysis can exploit individual patient follow-up imaging studies to adaptively predict the risk of progression.

View Article and Find Full Text PDF

Dual-stage optimizer for systematic overestimation adjustment applied to multi-objective genetic algorithms for biomarker selection.

Brief Bioinform

November 2024

School of Medicine, Institute of Biomedicine, University of Eastern Finland, Yliopistonranta 1, PO Box 1627, 70211 Kuopio, Finland.

The selection of biomarker panels in omics data, challenged by numerous molecular features and limited samples, often requires the use of machine learning methods paired with wrapper feature selection techniques, like genetic algorithms. They test various feature sets-potential biomarker solutions-to fine-tune a machine learning model's performance for supervised tasks, such as classifying cancer subtypes. This optimization process is undertaken using validation sets to evaluate and identify the most effective feature combinations.

View Article and Find Full Text PDF

The increasing prevalence of dental pathogens and oral cancer calls for new therapeutic agents. Nanoparticle (NPs) based tumor therapy enables precise targeting and controlled drug release, improving anti-cancer treatment efficacy while reducing systemic toxicity. Zinc oxide NPs (ZnO NPs) are notable in nanomedicine for their exceptional physicochemical and biological properties.

View Article and Find Full Text PDF

Lung cancer, as a serious threat to human health and life, necessitating urgent treatment and intervention. In this study, we prepared hyaluronic acid (HA)-targeted topotecan liposomes for site-specific delivery to tumor cells. The encapsulation efficiency, stability, chemical structure, and morphology of HA-targeted topotecan liposomes were studied, and the release properties, cellular uptake capacity, and therapeutic efficacy of topotecan were further investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!