Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this article, a new Binary Fully Convolutional Neural Network (B-FCN) based on Taguchi method sub-optimization for the segmentation of robotic floor regions, which can precisely distinguish floor regions in complex indoor environments is proposed. This methodology is quite suitable for robot vision in an embedded platform and the segmentation accuracy is up to 84.80% on average. A total of 6000 training datasets were used to improve the accuracy and reach convergence. On the other hand, to reach real-time computation, a PYNQ FPGA platform with heterogeneous computing acceleration was used to accelerate the proposed B-FCN architecture. Overall, robots would benefit from better navigation and route planning in our approach. The FPGA synthesis of our binarization method indicates an efficient reduction in the BRAM size to 0.5-1% and also GOPS/W is sufficiently high. Notably, the proposed faster architecture is ideal for low power embedded devices that need to solve the shortest path problem, path searching, and motion planning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663486 | PMC |
http://dx.doi.org/10.3390/s20216133 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!