Liquid resin infusion processes are becoming attractive for aeronautic applications as an alternative to conventional autoclave-based processes. They still present several challenges, which can be faced only with an accurate simulation able to optimize the process parameters and to replace traditional time-consuming trial-and-error procedures. This paper presents an experimentally validated model to simulate the resin infusion process of an aeronautical component by accounting for the anisotropic permeability of the reinforcement and the chemophysical and rheological changes in the crosslinking resin. The input parameters of the model have been experimentally determined. The experimental work has been devoted to the study of the curing kinetics and chemorheological behavior of the thermosetting epoxy matrix and to the determination of both the in-plane and out-of-plane permeability of two carbon fiber preforms using an ultrasonic-based method, recently developed by the authors. The numerical simulation of the resin infusion process involved the modeling of the resin flow through the reinforcement, the heat exchange in the part and within the mold, and the crosslinking reaction of the resin. The time necessary to fill the component has been measured by an optical fiber-based equipment and compared with the simulation results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663431 | PMC |
http://dx.doi.org/10.3390/ma13214800 | DOI Listing |
Materials (Basel)
January 2025
Department of Mechanical Engineering, Kunsan National University, Gunsan-si 54150, Republic of Korea.
The key structural components of a wind turbine blade, such as the skin, spar cap, and shear web, are fabricated from fiber-reinforced composite materials. The spar, predominantly manufactured via resin infusion-a process of resin injection and curing in carbon fibers-is prone to initial defects, such as pores, wrinkles, and delamination. This study suggests employing the pultrusion technique for spar production to consistently obtain a uniform cross-section and augment the reliability of both the manufacturing process and the design.
View Article and Find Full Text PDFJ Prosthet Dent
January 2025
Associate Professor and Director of Student Research, Division of Restorative and Prosthetic Dentistry, College of Dentistry, The Ohio State University, Columbus, OH. Electronic address:
Statement Of Problem: Currently there is no regulatory requirement or international standard for the wear resistance of dental materials and therefore no need to test prior to market launch.
Purpose: The purpose of this in vitro study was to evaluate and compare the total volumetric wear characteristics of milled polymer infiltrated ceramic network (MPICN) and printed polymer resin (PPR) as substrates opposing five antagonists, human enamel (EN), lithium disilicate (LD), zirconia (ZR), MPICN, and PPR, and to evaluate and compare the volumetric wear of these same materials as antagonists.
Material And Methods: Ten of each antagonist for a total of 50 EN, LD (IPS e.
Materials (Basel)
December 2024
Department of Non-Ferrous Metals, AGH University of Science and Technology, 30-059 Krakow, Poland.
The aim of this study was to compare the mechanical properties of carbon-fiber-reinforced polymer (CFRP) composites produced using three popular technologies. The tests were performed on composites produced from prepregs in an autoclave, the next variant is composites produced using the infusion method, and the third variant concerns composites produced using the vacuum-assisted hand lay-up method. For each variant, flat plates with dimensions of 1000 mm × 1000 mm were produced while maintaining similar material properties and fabric arrangement configuration.
View Article and Find Full Text PDFFood Sci Nutr
December 2024
BC Food and Beverage Innovation Centre, Faculty of Land and Food Systems The University of British Columbia Vancouver British Columbia Canada.
Myrrh oleo-gum-resin (MOGR) is a natural substance that has a rich history of medicinal use due to its anti-inflammatory, antimicrobial, and antioxidant properties. The present study reports on the fabrication and assessment of pectin and K-carrageenan composite films infused with varying proportions (0.3%, 0.
View Article and Find Full Text PDFSensors (Basel)
November 2024
School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China.
Monitoring of real-time flow and defects in the vacuum-assisted resin infusion (VARI) process can provide important guidelines for full impregnation of dry reinforcement. A weak fiber Bragg grating array was employed to obtain quasi-distributed monitoring results in real-time. Sensitivity testing of different kinds of coated optical fiber sensors (OFs) was carried out first, and the polyacrylate-coated OF showed a greater wavelength-shift response than the polyimide-coated one.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!