'Hook, line, and sinker': Fluorescence in situ hybridisation (FISH) uncovers Trypanosoma noyesi in Australian questing ticks.

Ticks Tick Borne Dis

UWA School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia.

Published: January 2021

Trypanosomes are blood-borne parasites infecting a range of mammalian hosts worldwide. In Australia, an increasing number of novel Trypanosoma species have been identified from various wildlife hosts, some of which are critically endangered. Trypanosoma noyesi is a recently described species of biosecurity concern, due to a close relationship to the South American human pathogen, Trypanosoma cruzi. This genetic similarity increases the risk for introduction of T. cruzi via a local vector. Unfortunately, there is a lack of knowledge concerning the vectorial capacity of Australian invertebrates for native Trypanosoma species. Australian ixodid ticks (Ixodidae), which are widespread ectoparasites of mammalian wildlife, have received the most attention as likely candidates for trypanosome transmission and have been previously implicated as vectors. However, as all studies to date have focused on blood-fed ticks collected directly from infected mammalian hosts, the question of whether ticks maintain a trypanosome infection between blood meals is unknown. In this study, we investigated the presence of Trypanosoma within 148 Australian adult and nymph questing ticks of the species Amblyomma triguttatum, Ixodes australiensis, Ixodes myrmecobii and larvae Ixodes spp., collected from an endemic region of south-west Australia. Using a novel HRM-qPCR detection method that can discriminate between species of Trypanosoma based on primer melting temperature (T), we report the first molecular detection of Trypanosoma DNA in Australian questing ticks, with 6 ticks DNA positive for T. noyesi. Additionally, the presence of intact T. noyesi parasites within all (n = 3) smeared gut and gland contents of questing ticks was confirmed using a fluorescence in situ hybridisation (FISH) assay. Whilst this study was unable to determine the in situ tissue location of trypanosomes for the purpose of discerning a potential route of transmission, these combined molecular and FISH smear data indicate that trypanosomes can persist in ticks between blood meals and that ticks are possibly vectors in the transmission of T. noyesi between native wildlife. Transmission experiments are still required to evaluate the competency of Australian ticks as vectors for T. noyesi. Nevertheless, these novel findings warrant further investigation concerning potential life stages and the development of trypanosomes in both Australian, and other, tick species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ttbdis.2020.101596DOI Listing

Publication Analysis

Top Keywords

questing ticks
16
ticks
11
fluorescence situ
8
situ hybridisation
8
hybridisation fish
8
trypanosoma
8
trypanosoma noyesi
8
australian questing
8
mammalian hosts
8
trypanosoma species
8

Similar Publications

With climate and land use changes, tick-borne pathogens are expected to become more widely distributed in Canada. Pathogen spread and transmission in this region is modulated by changes in the abundance and distribution of tick and host populations. Here, we assessed the relationships between pathogens detected in and mammal hosts at sites of different levels of disease risk using data from summer field surveys in Ontario and Quebec, Canada.

View Article and Find Full Text PDF

A seasonal matrix population model for ixodid ticks with complex life histories and limited host availability.

Ecology

January 2025

Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.

Many vector-borne diseases are sensitive to changes in land use and climate; hence, it is important to understand the factors that govern the vector populations. Ixodid ticks, which serve as vectors for multiple diseases, have a slow life cycle compared with many of their hosts. The observable questing population represents only a fraction of the total tick population and may include overlapping cohorts in each stage.

View Article and Find Full Text PDF

Molecular Detection of spp. and Other Tick-Borne Pathogens in Ticks from a Nature Reserve: Implications for Zoonotic Transmission.

Animals (Basel)

December 2024

Centro di Referenza Nazionale per Anaplasma, Babesia Rickettsia, Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", 90129 Palermo, Italy.

Ticks are a major concern for both animal and human health, as they are primary vectors of infectious pathogens. This study focused on ticks found in a nature reserve in southern Italy, highly frequented for recreational activities and inhabited by wild boars. Using molecular techniques, 214 ticks, including questing ticks and those removed from wild boars, were examined for tick-borne pathogens (TBPs), with a focus on zoonotic pathogens.

View Article and Find Full Text PDF

Seasonal activity patterns of Ixodes scapularis and Ixodes pacificus in the United States.

Ticks Tick Borne Dis

January 2025

Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States. Electronic address:

Article Synopsis
  • Knowledge of tick species' seasonal activity patterns is crucial in identifying periods when humans are most susceptible to tick bites and related diseases.
  • Despite extensive research on Ixodes scapularis and Ixodes pacificus, a comprehensive review summarizing this information is still needed.
  • The study identifies similar seasonal trends for these tick species in different regions, with activity peaks primarily in spring and variations in adult behaviors across different climates.
View Article and Find Full Text PDF

A previous laboratory study using Haemaphysalis longicornis Neumann (Acari: Ixodidae) ticks of North American origin showed that larvae could acquire the Lyme disease spirochete, Borrelia burgdorferi sensu stricto (s.s.) (Spirochaetales: Spirochaetaceae) while feeding to completion on infected mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!