HAN-ECG: An interpretable atrial fibrillation detection model using hierarchical attention networks.

Comput Biol Med

School of Engineering, Ngee Ann Polytechnic, Singapore; School of Science and Technology, Singapore University of Social Sciences, 463 Clementi Road, 599494, Singapore; Department Bioinformatics and Medical Engineering, Asia University, Taiwan. Electronic address:

Published: December 2020

Atrial fibrillation (AF) is one of the most prevalent cardiac arrhythmias that affects the lives of many people around the world and is associated with a five-fold increased risk of stroke and mortality. Like other problems in the healthcare domain, artificial intelligence (AI)-based models have been used to detect AF from patients' ECG signals. The cardiologist level performance in detecting this arrhythmia is often achieved by deep learning-based methods, however, they suffer from the lack of interpretability. In other words, these approaches are unable to explain the reasons behind their decisions. The lack of interpretability is a common challenge toward a wide application of machine learning (ML)-based approaches in the healthcare which limits the trust of clinicians in such methods. To address this challenge, we propose HAN-ECG, an interpretable bidirectional-recurrent-neural-network-based approach for the AF detection task. The HAN-ECG employs three attention mechanism levels to provide a multi-resolution analysis of the patterns in ECG leading to AF. The detected patterns by this hierarchical attention model facilitate the interpretation of the neural network decision process in identifying the patterns in the signal which contributed the most to the final detection. Experimental results on two AF databases demonstrate that our proposed model performs better than the existing algorithms. Visualization of these attention layers illustrates that our proposed model decides upon the important waves and heartbeats which are clinically meaningful in the detection task (e.g., absence of P-waves, and irregular R-R intervals for the AF detection task).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875017PMC
http://dx.doi.org/10.1016/j.compbiomed.2020.104057DOI Listing

Publication Analysis

Top Keywords

detection task
12
han-ecg interpretable
8
atrial fibrillation
8
hierarchical attention
8
lack interpretability
8
proposed model
8
detection
5
interpretable atrial
4
fibrillation detection
4
model
4

Similar Publications

Background: X-ray grating-based dark-field imaging can sense the small angle scattering caused by object's micro-structures. This technique is sensitive to the porous microstructure of lung alveoli and has the potential to detect lung diseases at an early stage. Up to now, a human-scale dark-field CT (DF-CT) prototype has been built for lung imaging.

View Article and Find Full Text PDF

We introduce EmoAtlas, a computational library/framework extracting emotions and syntactic/semantic word associations from texts. EmoAtlas combines interpretable artificial intelligence (AI) for syntactic parsing in 18 languages and psychologically validated lexicons for detecting the eight emotions in Plutchik's theory. We show that EmoAtlas can match or surpass transformer-based natural language processing techniques, BERT or large language models like ChatGPT 3.

View Article and Find Full Text PDF

MAI-TargetFisher: A proteome-wide drug target prediction method synergetically enhanced by artificial intelligence and physical modeling.

Acta Pharmacol Sin

January 2025

Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.

Computational target identification plays a pivotal role in the drug development process. With the significant advancements of deep learning methods for protein structure prediction, the structural coverage of human proteome has increased substantially. This progress inspired the development of the first genome-wide small molecule targets scanning method.

View Article and Find Full Text PDF

Aspect category sentiment analysis based on pre-trained BiLSTM and syntax-aware graph attention network.

Sci Rep

January 2025

Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing, 100081, China.

Aspect Category Sentiment Analysis (ACSA) is a fine-grained sentiment analysis task aimed at predicting the sentiment polarity associated with aspect categories within a sentence.Most existing ACSA methods are based on a given aspect category to locate sentiment words related to it. When irrelevant sentiment words have semantic meaning for the given aspect category, it may cause the problem that sentiment words cannot be matched with aspect categories.

View Article and Find Full Text PDF

Dual-task-related gait patterns as possible marker of precocious and subclinical cognitive alterations in Parkinson disease.

Sci Rep

January 2025

Department of Medicine, Surgery and Dentistry, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, Fisciano, Italy.

Subtle gait and cognitive dysfunction are common in Parkinson's disease (PD), even before most evident clinical manifestations. Such alterations can be assumed as hypothetical phenotypical and prognostic/progression markers. To compare spatiotemporal gait parameters in PD patients with three cognitive status: cognitively intact (PD-noCI), with subjective cognitive impairment (PD-SCI) and with mild cognitive impairment (PD-MCI) in order to detect subclinical gait differences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!