Atrial fibrillation (AF) is one of the most prevalent cardiac arrhythmias that affects the lives of many people around the world and is associated with a five-fold increased risk of stroke and mortality. Like other problems in the healthcare domain, artificial intelligence (AI)-based models have been used to detect AF from patients' ECG signals. The cardiologist level performance in detecting this arrhythmia is often achieved by deep learning-based methods, however, they suffer from the lack of interpretability. In other words, these approaches are unable to explain the reasons behind their decisions. The lack of interpretability is a common challenge toward a wide application of machine learning (ML)-based approaches in the healthcare which limits the trust of clinicians in such methods. To address this challenge, we propose HAN-ECG, an interpretable bidirectional-recurrent-neural-network-based approach for the AF detection task. The HAN-ECG employs three attention mechanism levels to provide a multi-resolution analysis of the patterns in ECG leading to AF. The detected patterns by this hierarchical attention model facilitate the interpretation of the neural network decision process in identifying the patterns in the signal which contributed the most to the final detection. Experimental results on two AF databases demonstrate that our proposed model performs better than the existing algorithms. Visualization of these attention layers illustrates that our proposed model decides upon the important waves and heartbeats which are clinically meaningful in the detection task (e.g., absence of P-waves, and irregular R-R intervals for the AF detection task).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875017 | PMC |
http://dx.doi.org/10.1016/j.compbiomed.2020.104057 | DOI Listing |
Med Phys
January 2025
Department of Engineering Physics, Tsinghua University, Beijing, China.
Background: X-ray grating-based dark-field imaging can sense the small angle scattering caused by object's micro-structures. This technique is sensitive to the porous microstructure of lung alveoli and has the potential to detect lung diseases at an early stage. Up to now, a human-scale dark-field CT (DF-CT) prototype has been built for lung imaging.
View Article and Find Full Text PDFBehav Res Methods
January 2025
CogNosco Lab, Department of Psychology and Cognitive Sciences, University of Trento, Trento, Italy.
We introduce EmoAtlas, a computational library/framework extracting emotions and syntactic/semantic word associations from texts. EmoAtlas combines interpretable artificial intelligence (AI) for syntactic parsing in 18 languages and psychologically validated lexicons for detecting the eight emotions in Plutchik's theory. We show that EmoAtlas can match or surpass transformer-based natural language processing techniques, BERT or large language models like ChatGPT 3.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
Computational target identification plays a pivotal role in the drug development process. With the significant advancements of deep learning methods for protein structure prediction, the structural coverage of human proteome has increased substantially. This progress inspired the development of the first genome-wide small molecule targets scanning method.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing, 100081, China.
Aspect Category Sentiment Analysis (ACSA) is a fine-grained sentiment analysis task aimed at predicting the sentiment polarity associated with aspect categories within a sentence.Most existing ACSA methods are based on a given aspect category to locate sentiment words related to it. When irrelevant sentiment words have semantic meaning for the given aspect category, it may cause the problem that sentiment words cannot be matched with aspect categories.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medicine, Surgery and Dentistry, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, Fisciano, Italy.
Subtle gait and cognitive dysfunction are common in Parkinson's disease (PD), even before most evident clinical manifestations. Such alterations can be assumed as hypothetical phenotypical and prognostic/progression markers. To compare spatiotemporal gait parameters in PD patients with three cognitive status: cognitively intact (PD-noCI), with subjective cognitive impairment (PD-SCI) and with mild cognitive impairment (PD-MCI) in order to detect subclinical gait differences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!