Effect of fiber exclusion in uniaxial tensile tests of soft biological tissues.

J Mech Behav Biomed Mater

Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, H3A 0C3, Canada. Electronic address:

Published: December 2020

The effect of the exclusion of the compressed fibers in the identification of material parameters from uniaxial tensile tests on two orthogonal strips is investigated. The micro-structurally based constitutive model with two dispersion parameters developed by Holzapfel and his colleagues is utilized in the study. A new exclusion method, based on the coefficient reflecting the percentage of stretched fibers, is proposed. The material parameters are identified by using experimental data from 30 uniaxial tensile tests (5 donors, 6 strips per donor) and a genetic algorithm code that is capable to find the optimal set of parameters. The contraction of the strip width computed by using the hyperelastic model with the identified material parameters is compared to the experimental data for two human aortas (one from literature and one experiment, specific for this study), in order to show the accuracy of the identified model. The complex behavior of the thickness deformation of the strip is also obtained and compared to the experimental data derived from in-plane measurements and the incompressibility condition. Results show that the in-plane fiber exclusion is appropriate for aortic material characterization with uniaxial tensile tests, reducing very significantly the computational cost. At the same time, thickness growth of strips during uniaxial tests is possible, depending on fiber dispersion and orientation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2020.104079DOI Listing

Publication Analysis

Top Keywords

uniaxial tensile
16
tensile tests
16
material parameters
12
experimental data
12
fiber exclusion
8
compared experimental
8
uniaxial
5
tests
5
parameters
5
exclusion uniaxial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!