In the present study we aimed to identify novel mechanisms and therapeutics for thoracic aortic aneurysm (TAA) in Fbn1 Marfan Syndrome (MFS) mice. The expression of mature/active TGFβ and its downstream effector NOX4 were upregulated while tetrahydrobiopterin (HB) salvage enzyme dihydrofolate reductase (DHFR) was downregulated in Fbn1 mice. In vivo treatment with anti-TGFβ completely attenuated NOX4 expression, restored DHFR protein abundance, reduced ROS production, recoupled eNOS and attenuated aneurysm formation. Intriguingly, oral administration with folic acid (FA) to recouple eNOS markedly alleviated expansion of aortic roots and abdominal aortas in Fbn1 mice, which was attributed to substantially upregulated DHFR expression and activity in the endothelium to restore tissue and circulating levels of HB. Notably, circulating HB levels were accurately predictive of tissue HB bioavailability, and negatively associated with expansion of aortic roots, indicating a novel biomarker role of circulating HB for TAA. Furthermore, FA diet abrogated TGFβ and NOX4 expression, disrupting the feed-forward loop to inactivate TGFβ/NOX4/DHFR/eNOS uncoupling axis in vivo and in vitro, while PTIO, a NO scavenger, reversed this effect in cultured human aortic endothelial cells (HAECs). Besides, expression of the rate limiting HB synthetic enzyme GTP cyclohydrolase 1 (GTPCHI), was downregulated in Fbn1 mice at baseline. In cultured HAECs, RNAi inhibition of fibrillin resulted in reduced GTPCHI expression, while this response was abrogated by anti-TGFβ, indicating TGFβ-dependent downregulation of GTPCHI in response to fibrillin deficiency. Taken together, our data for the first time reveal that uncoupled eNOS plays a central role in TAA formation, while anti-TGFβ and FA diet robustly abolish aneurysm formation via inactivation of a novel TGFβ/NOX4/DHFR/eNOS uncoupling/TGFβ feed-forward pathway. Correction of fibrillin deficiency is additionally beneficial via preservation of GTPCHI function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585948 | PMC |
http://dx.doi.org/10.1016/j.redox.2020.101757 | DOI Listing |
Front Genet
January 2025
Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Marfan syndrome (MFS) is an inherited disorder that affects the connective tissues and mainly presents in the bones, eyes, and cardiovascular system, etc. Aortic pathology is the leading cause of death in patients with Marfan syndrome. The fibrillin-1 gene () is a major gene involved in the pathogenesis of MFS.
View Article and Find Full Text PDFIntroduction: The pathogenic role of nitric oxide (NO) signaling during development of thoracic aortic aneurysm (TAA) in Marfan syndrome (MFS) is currently unclear. We characterized vasomotor function and its relationship to the activity of the NO-generating enzymes in mice with early onset progressively severe MFS.
Methods: Wire myography, immunoblotting, measurements of aortic NO and superoxide levels were used to compare vasomotor function, contractile-protein levels, and the activity of endothelial and inducible NO synthase (eNOS and iNOS, respectively) in ascending thoracic aortas of Fbn1mgR/mgR mice relative to wild type (WT) littermates.
J Clin Invest
January 2025
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
The pathogenesis of thoracic aortic aneurysm (TAA) in Marfan syndrome (MFS) is generally attributed to vascular smooth muscle cell (VSMC) pathologies. However, the role of immune cell-mediated inflammation remains elusive. Single-cell RNA sequencing identified a subset of CX3CR1+ macrophages mainly located in the intima in the aortic roots and ascending aortas of Fbn1C1041G/+ mice, further validated in MFS patients.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA.
Marfan syndrome (MFS) is a systemic connective tissue disorder stemming from mutations in the gene encoding Fibrillin-1 (Fbn1), a key extracellular matrix glycoprotein. This condition manifests with various clinical features, the most critical of which is the formation of aortic root aneurysms. Reduced nitric oxide (NO) production due to diminished endothelial nitric oxide synthase (eNOS) activity has been linked to MFS aortic aneurysm pathology.
View Article and Find Full Text PDFJ Clin Invest
December 2024
Department of Stomatology, Union Hospital and.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!