Evidence suggests there are two treatment-resistant schizophrenia subtypes (i.e. early treatment resistant (E-TR) and late-treatment resistant (L-TR)). We aimed to develop prediction models for estimating individual risk for these outcomes by employing advanced statistical shrinkage methods. 239 first-episode schizophrenia (FES) patients were followed-up for approximately 5 years after first presentation to psychiatric services; of these, n=56 (25.2%) were defined as E-TR and n=24 (12.6%) were defined as L-TR. Using known risk factors for poor schizophrenia outcomes, we developed prediction models for E-TR and L-TR using LASSO and RIDGE logistic regression models. Models' internal validation was performed employing Harrell's optimism-correction with repeated cross-validation; their predictive accuracy was assessed through discrimination and calibration. Both LASSO and RIDGE models had high discrimination, good calibration. While LASSO had moderate sensitivity for estimating an individual risk for E-TR and L-TR, sensitivity estimated for RIDGE model for these outcomes was extremely low, which was due to having a very large estimated optimism. Although it was possible to discriminate with sufficient accuracy who would meet criteria for E-TR and L-TR during the 5-year follow-up after first contact with mental health services for schizophrenia, further work is necessary to improve sensitivity for these models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.psychres.2020.113527 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!