Making the Biotic Ligand Model kinetic, easier to develop, and more flexible for deriving water quality criteria.

Water Res

Key Laboratory of the Coastal and Wetland Ecosystems of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Center for Marine Environmental Chemistry and Toxicology, Xiamen University, Xiamen, Fujian 361102, China. Electronic address:

Published: January 2021

In aquatic environments, the ecological risks posed by metals are greatly affected by water chemistry, thereby creating challenges for water quality management. Biotic ligand models (BLMs) have become the most widely used tools to interpret and predict water chemistry effects. Traditional BLM development methods require a large number of toxicity tests and organisms, and model predictions are limited to certain toxicity statistics (e.g., 48-h median effective concentration, 48-h EC), to which the models were calibrated. To address these limitations, we propose a new method to develop BLMs by integrating them into the toxicokinetic-toxicodynamic (TK-TD) framework. Metal bioaccumulation was predicted from metal exposure and water chemistry using the BLM-type toxicokinetics, whilst metal toxicity was predicted from metal bioaccumulation using the toxicodynamics. Using the new method, we developed a kinetic BLM of cadmium for Daphnia magna with only six toxicity tests and 1540 daphnids; this represents a 60-80% reduction compared to the traditional methods. The model was validated in the presence of commercial dissolved organic matter (DOM) and in natural waters sampled from 12 lakes. The kinetic BLM was able to accurately simulate the protective effects of the commercial DOM by employing the Stockholm humic model, whilst the complexation capabilities of some natural DOM were overestimated. We further used the model to predict Cd EC and no-effect concentrations for different waters, generating predictions close to the effect concentrations reported in the literature. Overall, our method requires fewer resources and presents an easier approach to develop BLMs; the kinetic BLM is more flexible and can serve as a useful tool for developing water quality criteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2020.116548DOI Listing

Publication Analysis

Top Keywords

water quality
12
water chemistry
12
kinetic blm
12
biotic ligand
8
quality criteria
8
toxicity tests
8
develop blms
8
metal bioaccumulation
8
predicted metal
8
water
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!