Isoindolinone Synthesis via One-Pot Type Transition Metal Catalyzed C-C Bond Forming Reactions.

Chemistry

Johan Gadolin Process Chemistry Centre, Laboratory of Molecular Science and Technology, Åbo Akademi University, Biskopsgatan 8, 20500, Turku, Finland.

Published: March 2021

Isoindolinone structure is an important privileged scaffold found in a large variety of naturally occurring as well as synthetic, biologically and pharmaceutically active compounds. Owing to its crucial role in a number of applications, the synthetic methodologies for accessing this heterocyclic skeleton have received significant attention during the past decade. In general, the synthetic strategies can be divided into two categories: First, direct utilization of phthalimides or phthalimidines as starting materials for the synthesis of isoindolinones; and second, construction of the lactam and/or aromatic rings by different catalytic methods, including C-H activation, cross-coupling, carbonylation, condensation, addition and formal cycloaddition reactions. Especially in the last mentioned, utilization of transition metal catalysts provides access to a broad range of substituted isoindolinones. Herein, the recent advances (2010-2020) in transition metal catalyzed synthetic methodologies via formation of new C-C bonds for isoindolinones are reviewed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048987PMC
http://dx.doi.org/10.1002/chem.202004375DOI Listing

Publication Analysis

Top Keywords

transition metal
12
metal catalyzed
8
synthetic methodologies
8
isoindolinone synthesis
4
synthesis one-pot
4
one-pot type
4
type transition
4
catalyzed c-c
4
c-c bond
4
bond forming
4

Similar Publications

Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.

View Article and Find Full Text PDF

We report herein two families of porous coordination clusters (PCCs) with 216 nuclearity (M120RE96 or PCC-216MR) and 300 nuclearity (Co144Gd156 or PCC-300CG). For the first family M could be either nickel or cobalt, and RE = Pr, Nd, Sm, Eu, and Gd; while the latter features the highest nuclearity of transition-rare earth metal clusters. Characterized by their cube-like, hollow structures, these clusters exhibit the ability to absorb N2 and CO2.

View Article and Find Full Text PDF

Purpose: To compare the efficacy and safety of skip titanium plates combined with adjacent spinous process suture suspension versus continuous titanium plate fixation in cervical laminoplasty.

Methods: A retrospective analysis of 125 patients (62 men, 63 women, average age 60.9 ± 10.

View Article and Find Full Text PDF

The management of micronutrients, such as boron (B) and zinc (Zn), is critical for plant growth and crop yields. One method of rapid intervention crop management to mitigate nutritional deficiency is the foliar supply of B and Zn. Our study investigates the effect of foliar-supplied B and Zn availability on the global transcriptional modulation in soybean (Glycine max).

View Article and Find Full Text PDF

Enhancer-driven Shh signaling promotes glia-to-mesenchyme transition during bone repair.

Bone Res

January 2025

Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.

Plp1-lineage Schwann cells (SCs) of peripheral nerve play a critical role in vascular remodeling and osteogenic differentiation during the early stage of bone healing, and the abnormal plasticity of SCs would jeopardize the bone regeneration. However, how Plp1-lineage cells respond to injury and initiate the vascularized osteogenesis remains incompletely understood. Here, by employing single-cell transcriptional profiling combined with lineage-specific tracing models, we uncover that Plp1-lineage cells undergoing injury-induced glia-to-MSCs transition contributed to osteogenesis and revascularization in the initial stage of bone injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!