A novel glucose-Zn-based porous coordination polymer (PCP) was selected as a carrier of cell membranes (CMs) to fabricate CM-coated PCP (CMPCP) for rapid screening of potentially active compounds from natural products. The cell disruption and the amount of maximum CMs adsorbed on PCP were optimized according to the amount of immobilized protein. This new kind of matrix exhibited good reproducibility and stability, and was applied for fishing potentially active compounds from the extracts of Vaccinium corymbosum L. leaves (VCL). Using LC-MS/MS, chlorogenic acid and quercetin were identified as the potentially active compounds through comparison of normal and non-alcoholic fatty liver disease (NAFLD)-modeled CMPCP. Our results suggested that the proposed approach based on CMPCP was environmentally friendly, cost-effective, and convenient in terms of green porous material, stable protein loading capacity, and accessible operation process. The developed method could provide a promising platform for efficient drug discovery from natural product resources.Graphical abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-020-04612-0DOI Listing

Publication Analysis

Top Keywords

active compounds
16
glucose-zn-based porous
8
porous coordination
8
coordination polymer
8
rapid screening
8
screening active
8
vaccinium corymbosum
8
corymbosum leaves
8
immobilization cell
4
cell membrane
4

Similar Publications

Abiotic stress-induced changes in Tetrastigma hemsleyanum: insights from secondary metabolite biosynthesis and enhancement of plant defense mechanisms.

BMC Plant Biol

December 2024

Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.

Tetrastigma hemsleyanum, a traditional Chinese medicinal plant with anti-inflammatory, anti-cancer, and anti-tumor properties, faces increasing abiotic stress due to climate change, agricultural chemicals, and industrialization. This study investigated how three abiotic stress factors influence antioxidant enzyme activity, MDA levels, DPPH free radical scavenging capacity, chlorophyll, carotenoids, active compounds, and gene expression in different T. hemsleyanum strains.

View Article and Find Full Text PDF

This study investigated the effect of various levels of OH-MWCNTs mediated seed priming on germination, growth, and biochemical responses of Indian mustard (Brassica juncea (L.) Czern. & Coss.

View Article and Find Full Text PDF

Rhaponticin Alleviates Collagen-induced Arthritis by Inhibiting NLRP3/GSDMD-mediated Neutrophil Extracellular Traps.

Inflammation

December 2024

Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China.

Neutrophil extracellular traps (NETs) play an important role in the inflammatory response and progressive joint destruction in rheumatoid arthritis (RA). Rhaponticin (Rha) is a stilbene glycoside compound with antioxidant and anti-inflammatory effects. This study aimed to investigate the therapeutic potential of Rha in RA, with a specific focus on its effects on NETs and on the underlying mechanisms of Rha.

View Article and Find Full Text PDF

Macrocyclic Compounds with Diverse Skeletons from the Roots of and Their Spasmolytic Activity.

J Nat Prod

December 2024

Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education of China, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650504, People's Republic of China.

Six undescribed macrocyclic compounds, including diarylhexanoids ( and ), a diarylhexanoid glucoside (), diarylheptanoids ( and ), and an aceroside (), were isolated from the roots of Cheval., along with 11 known analogues (-). The structures were elucidated by spectroscopic analysis, as well as by calculated optical rotatory dispersion and derivatization reactions.

View Article and Find Full Text PDF

Objectives: To investigate the mechanism of PHPS1 for promoting apoptosis of oral squamous cell carcinoma cells and the role of AMPK in regulating tumor angiogenesis under hypoxic conditions.

Methods: Human oral squamous cell carcinoma Ca9-22 cells cultured in hypoxic conditions (1% O) were inoculated subcutaneously in 16 nude mice, which were divided into control group and PHPS1 group (8) for treatment with 10% DMSO and 10% PHPS1 respectively. Tumor growth in the mice was monitored till 14 days after the treatment, and the xenografts were examined pathologically using HE staining.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!