Gallium-based drugs have been repurposed as antibacterial therapeutic candidates and have shown significant potential as an alternative treatment option against drug resistant pathogens. The activity of gallium (Ga) is a result of its chemical similarity to ferric iron (Fe) and substitution into iron-dependent pathways. Ga is redox inactive in typical physiological environments and therefore perturbs iron metabolism vital for bacterial growth. Gallium maltolate (GaM) is a well-known water-soluble formulation of gallium, consisting of a central gallium cation coordinated to three maltolate ligands, [Ga(Maltol)]. This study implemented a label-free quantitative proteomic approach to observe the effect of GaM on the bacterial pathogen, Pseudomonas aeruginosa. The replacement of iron for gallium mimics an iron-limitation response, as shown by increased abundance of proteins associated with iron acquisition and storage. A decreased abundance of proteins associated with quorum-sensing and swarming motility was also identified. These processes are a fundamental component of bacterial virulence and dissemination and hence suggest a potential role for GaM in the treatment of P. aeruginosa infection.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00775-020-01831-xDOI Listing

Publication Analysis

Top Keywords

quantitative proteomic
8
gallium maltolate
8
pseudomonas aeruginosa
8
abundance proteins
8
proteins associated
8
gallium
6
proteomic reveals
4
reveals gallium
4
maltolate induces
4
induces iron-limited
4

Similar Publications

Introduction: The plasma proteome's mediating or moderating roles in the association between poor cardiovascular health (CVH) and brain white matter (WM) microstructural integrity are largely unknown.

Methods: Data from 3953 UK Biobank participants were used (40-70 years, 2006-2010), with a neuroimaging visit between 2014 and 2021. Poor CVH was determined using Life's Essential 8 (LE8) and reversing standardized z-scores (LE8 ).

View Article and Find Full Text PDF

The discrepancy between donor organ availability and demand leads to a significant waiting-list dropout rate and mortality. Although quantitative tools such as the Donor Risk Index (DRI) help assess organ suitability, many potentially viable organs are still discarded due to the lack of universally accepted markers to predict post-transplant outcomes. Normothermic machine perfusion (NMP) offers a platform to assess viability before transplantation.

View Article and Find Full Text PDF

Background: Gestational diabetes mellitus (GDM) is defined as a glucose intolerance resulting in hyperglycaemia of variable severity with onset during pregnancy, and is prevalent worldwide. The study of diagnostic markers of GDM in early pregnancy is important for early diagnosis and early intervention of GDM. The aim of this study was to search for biomarkers of GDM in early and mid-pregnancy using a targeted proteomics approach.

View Article and Find Full Text PDF

Despite significant advancements in sample preparation, instrumentation and data analysis, single-cell proteomics is currently limited by proteomic depth and quantitative performance. Here we demonstrate highly improved depth of proteome coverage as well as accuracy and precision for quantification of ultra-low input amounts. Using a tailored library, we identify up to 7,400 protein groups from as little as 250 pg of HeLa cell peptides at a throughput of 50 samples per day.

View Article and Find Full Text PDF

Metabolic abnormalities associated with excess adiposity in obesity contribute to many noncommunicable diseases, including sarcopenic obesity. Sarcopenic obesity is the loss of muscle mass coupled with excess fat mass and fatty infiltrations in muscle tissue called myosteatosis. A diet-induced obesity model was developed to study fat infiltration in muscle tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!