Gait asymmetry in lower-limb amputees can lead to several secondary conditions that can decrease general health and quality of life. Including augmented sensory feedback in rehabilitation programs can effectively mitigate spatiotemporal gait irregularities. Such benefits can be obtained with non-invasive haptic systems representing an advantageous choice for usability in overground training and every-day life. In this study, we tested a wearable tactile feedback device delivering short-lasting (100ms) vibrations around the waist syncronized to gait events, to improve the temporal gait symmetry of lower-limb amputees. Three above-knee amputees participated in the study. The device provided bilateral stimulations during a training program that involved ground-level gait training. After three training sessions, participants showed higher temporal symmetry when walking with the haptic feedback in comparison to their natural walking (resulting symmetry index increases of +2.8% for Subject IDA, +12.7% for Subject IDB and +2.9% for Subject IDC). One subject retained improved symmetry (Subject IDB,+14.9%) even when walking without the device. Gait analyses revealed that higher temporal symmetry may lead to concurrent compensation strategies in the trunk and pelvis. Overall, the results of this pilot study confirm the potential utility of sensory feedback devices to positively influence gait parameters when used in supervised settings. Future studies shall clarify more precisely the training modalities and the targets of rehabilitation programs with such devices.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2020.3034521DOI Listing

Publication Analysis

Top Keywords

lower-limb amputees
12
symmetry lower-limb
8
sensory feedback
8
rehabilitation programs
8
higher temporal
8
temporal symmetry
8
gait
7
feedback
5
training
5
symmetry
5

Similar Publications

Objective: High-density nerve cuffs have been successfully utilized to restore somatosensation in individuals with lower-limb loss by interfacing directly with the peripheral nervous system. Elicited sensations via these devices have improved various functional outcomes, including standing balance, walking symmetry, and navigating complex terrains. Deploying neural interfaces in the lower limbs of individuals with limb loss presents unique challenges, particularly due to repetitive muscle contractions and the natural range of motion in the knee and hip joints for transtibial and transfemoral amputees, respectively.

View Article and Find Full Text PDF

Factors Affecting Physical Activity in Iraqi Patients with Lower Limb Amputation.

Med J Islam Repub Iran

September 2024

Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.

Background: Limb loss can negatively affect the psychological and physical well-being, mobility, and social life of people with lower limb amputation. Participating in physical activities is of great importance for these people. This study aimed to explore factors affecting the physical activity of Iraqi lower-limb amputees.

View Article and Find Full Text PDF

Evaluating interface pressure in a lower-limb prosthetic socket: Comparison of FEM and experimental measurements on a roll-over simulator.

J Biomech

January 2025

Arts et Métiers Institute of Technology, Université Sorbonne Paris Nord, IBHGC - Institut de Biomécanique Humaine Georges Charpak, HESAM Université, 151 boulevard de l'Hôpital, 75013 Paris, France. Electronic address:

Improper socket fitting in lower-limb prostheses can lead to significant complications, including pain, skin lesions, and pressure ulcers. Current suspension and socket design practices rely predominantly on visual inspection of the residual limb and patient feedback. Monitoring stress distribution at the residual limb/socket interface offers a more objective approach.

View Article and Find Full Text PDF

Cycling is a beneficial physical activity for rehabilitating individuals with lower-limb amputations and serves as a feasible leisure sport. However, the optimal bicycle configuration for cycling with a unilateral transtibial prosthesis at leisure levels has not been investigated. For saddle height at professional cycling levels, existing literature suggests utilizing the same configuration as that used by intact cyclists, where the knee reaches 25-35° at maximum extension.

View Article and Find Full Text PDF

Following lower limb amputation residuum skin from the lower leg is used to reconstruct the residual limb. Unlike skin on the sole of the foot (plantar skin), leg skin is not inherently load bearing. Despite this, leg skin is required to be load bearing in the prosthetic socket.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!