We study the CaM-peptide interactions for four CaM-related peptides with different calcium equivalents, using the CaM-M124C- biosensor and Molecular Dynamics (MD). Due to the high sensitivity of the biosensor, we were able to calculate five based on the number of calcium equivalents for each peptide, showing a directly proportional relationship between the degree of calcium saturation and the increased affinity for the Calspermin, nNOS, and skMLSK peptides; while the CaV1.1 peptide has a degree of affinity independent of the number of calcium equivalent. On the other hand, the MD studies were designed based on the experimental results; I) visualizing the effect of the gradual elimination of calcium in Holo-CaM and II) analyzing the CaM-Peptide complexes with and without calcium. We observe that the gradual addition of calcium increases the flexibility of Holo-CaM. Concerning CaM-Peptide complexes, it presents differences in both the ΔG and the RMSD. These results demonstrate the importance of the use of biosensors and the power of MD to make inferences in systems such as CaM-peptide complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2020.1841679DOI Listing

Publication Analysis

Top Keywords

calcium equivalents
12
cam-peptide complexes
12
calcium
8
number calcium
8
theoretical-experimental studies
4
studies calmodulin-peptide
4
calmodulin-peptide interactions
4
interactions calcium
4
equivalents study
4
cam-peptide
4

Similar Publications

Preparation of thermoresponsive & enzymatically crosslinkable gelatin-gellan gum bioink: A protein-polysaccharide hydrogel for 3D bioprinting of complex soft tissues.

Int J Biol Macromol

January 2025

Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India. Electronic address:

Developing superior bioinks present several challenges in achieving ideal properties such as biocompatibility, viscosity, degradation rates & mechanical properties which are required to make functional tissue constructs. Various attempts have been made to prepare excellent bioink compositions that are suitable to address the above challenges. Herein, a versatile combination of gelatin (GL) - gellan gum (GG) bioink was successfully formulated & the bioink 7.

View Article and Find Full Text PDF

Crown ethers have been shown to have physiological effects ascribed to their ionophoric properties. However, high levels of toxicity precluded interest in their evaluation as therapeutic agents. We prepared new silacrown analogs of crown ethers.

View Article and Find Full Text PDF

This study aimed to evaluate the effectiveness of bioactive toothpastes in remineralizing eroded enamel surfaces in vitro. Bovine enamel blocks (n = 48) were obtained and classified into untreated, demineralized, and treated areas. Specimens were randomly classified into six groups (n = 8 each): fluoride-free toothpaste (NCT), Colgate Total 12 (PCT), Sensodyne Repair and Protect (SRP), Sensodyne Pronamel (SPE), Regenerador + Sensitive (RGS), and RGS/calcium booster (RCB).

View Article and Find Full Text PDF

Nutritional value, HPLC-DAD analysis and biological activities of Ceratonia siliqua L. pulp based on in vitro and in silico studies.

Sci Rep

December 2024

Agri-food Technology and Quality Laboratory, Regional Centre of Agricultural Research of Tadla, National Institute of Agricultural research (INRA), Avenue Ennasr, BP 415 Rabat principal, Rabat, 10090, Morocco.

The phytochemical, nutritional, and biological features of wild carob pulp from Tanzight (TN), Ait-Waada (AW), and Tizi-ghnayn (TG) in Azilal were studied. The results of the study reveal that the carob pulp examined has a low-fat level. AW had the most total sugar (78.

View Article and Find Full Text PDF

The majority of the carbon footprint of the cement industry originates from the decomposition of alkaline carbonates during clinker production. Recent studies have demonstrated that calcium oxides and other alkaline oxides in cement materials can sequester CO through the carbonation process and partially offset the carbon emissions generated during cement production. This study employs a comprehensive analytical model to estimate the CO uptake via hydrated cement carbonation, including concrete, mortar, construction waste, and cement kiln dust (CKD), covering major cement production and consumption regions worldwide from 1930 to 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!