Gas-Phase Resonance Raman Spectroscopy Combined with IR-Laser Ablation of a Droplet Beam: Local Structural Analysis of Myoglobin.

J Phys Chem A

Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.

Published: November 2020

Gas phase spectroscopy is a powerful tool for examining fundamental chemical structures and properties free from solvent molecules. We developed a gas-phase resonance Raman spectroscopy combined with IR-laser ablation of a droplet beam, which allowed us to elucidate local structures around chromophores in gas-phase proteins and DNAs. To demonstrate the potential of this approach, we applied this method to myoglobin, one of the heme proteins, and elucidated its structures in the gas phase and in aqueous solution. The experimental spectra are compared with calculated spectra of stable heme structures for the structural determination. These results show the oxidation/spin states of the Fe atom in myoglobin in the gas phase and were compared with the aqueous solution from the obtained resonant Raman spectra. The present method gives an important tool to investigate the gas-phase structure of large biomolecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.0c08058DOI Listing

Publication Analysis

Top Keywords

gas phase
12
gas-phase resonance
8
resonance raman
8
raman spectroscopy
8
spectroscopy combined
8
combined ir-laser
8
ir-laser ablation
8
ablation droplet
8
droplet beam
8
myoglobin gas
8

Similar Publications

Mechanism of the Non-Kasha Fluorescence in Pyrene.

J Comput Chem

January 2025

Department of Chemistry, 1102 Natural Sciences II, University of California Irvine, Irvine, California, USA.

The high-energy shoulder in the gas-phase fluorescence emission spectrum of pyrene is a well-known example of non-Kasha emission. We comparatively assess two approaches, vibronic perturbation theory and nonadiabatic dynamics, in their ability to predict and explain the gas-phase fluorescence spectrum of pyrene. While both methods qualitatively capture the non-Kasha emission, they differ in their computational requirements, accuracy, and physical interpretation.

View Article and Find Full Text PDF

Theoretical Study on Adsorption of Halogenated Benzenes on Montmorillonites Modified With M(I)/M(II) Cations.

J Comput Chem

January 2025

Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany.

Halogenated benzenes (HBs) are hydrophobic organic chemicals belonging to persistent organic pollutants. Owing to their persistence, they represent a serious problem in environmental contamination, specifically of soils and sediments. One of the most important physical processes determining the fate of HBs in soils is adsorption to main soil components such as soil organic matter and soil minerals.

View Article and Find Full Text PDF

Poly(lactic acid) (PLA) offers a renewable and degradable alternative to petroleum-based plastic, but its mechanical properties are not ideal for many applications. Herein, we describe the synthesis and polymerization of 2-oxo-3,8-dioxabicyclo[3.2.

View Article and Find Full Text PDF

Infrared Ion Spectroscopy of Gaseous [Cu(2,2'-Bipyridine)]: Investigation of Jahn-Teller Elongation Versus Compression.

J Phys Chem A

January 2025

Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.

Symmetry breaking is ubiquitous in chemical transformations and affects various physicochemical properties of materials and molecules; Jahn-Teller (JT) distortion of hexa-coordinated transition-metal-ligand complexes falls within this paradigm. An uneven occupancy of degenerate 3d-orbitals forces the complex to adopt an axially elongated or compressed geometry, lowering the symmetry of the system and lifting the degeneracy. Coordination complexes of Cu are known to exhibit axial elongation, while compression is far less common, although this may be due to the lack of rigorous experimental verification.

View Article and Find Full Text PDF

Probing London Dispersion in Proton-Bound Onium Ions: Are Alkyl-Alkyl Steric Interactions Reliably Modeled?

J Am Chem Soc

January 2025

Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland.

We report spectroscopic and spectrometric experiments that probe the London dispersion interaction between -butyl substituents in three series of covalently linked, protonated -pyridines in the gas phase. Molecular ions in the three test series, along with several reference molecules for control, were electrosprayed from solution into the gas phase and then probed by infrared multiphoton dissociation spectroscopy and trapped ion mobility spectrometry. The observed N-H stretching frequencies provided an experimental readout diagnostic of the ground-state geometry of each ion, which could be furthermore compared to a second, independent structural readout via the collision cross section.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!