Ion identity and concentration influence the solubility of macromolecules. To date, substantial effort has been focused on obtaining a molecular level understanding of specific effects for anions. By contrast, the role of cations has received significantly less attention and the underlying mechanisms by which cations interact with macromolecules remain more elusive. To address this issue, the solubility of poly(-isopropylacrylamide), a thermoresponsive polymer with an amide moiety on its side chain, was studied in aqueous solutions with a series of nine different cation chloride salts as a function of salt concentration. Phase transition temperature measurements were correlated to molecular dynamics simulations. The results showed that although all cations were on average depleted from the macromolecule/water interface, more strongly hydrated cations were able to locally accumulate around the amide oxygen. These weakly favorable interactions helped to partially offset the salting-out effect. Moreover, the cations approached the interface together with chloride counterions in solvent-shared ion pairs. Because ion pairing was concentration-dependent, the mitigation of the dominant salting-out effect became greater as the salt concentration was increased. Weakly hydrated cations showed less propensity for ion pairing and weaker affinity for the amide oxygen. As such, there was substantially less mitigation of the net salting-out effect for these ions, even at high salt concentrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.0c07214 | DOI Listing |
J Comput Chem
January 2025
Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile.
The standard Poisson-Boltzmann (PB) model for molecular electrostatics assumes a sharp variation of the permittivity and salt concentration along the solute-solvent interface. The discontinuous field parameters are not only difficult numerically, but also are not a realistic physical picture, as it forces the dielectric constant and ionic strength of bulk in the near-solute region. An alternative to alleviate some of these issues is to represent the molecular surface as a diffuse interface, however, this also presents challenges.
View Article and Find Full Text PDFChem Biodivers
January 2025
Al-Azhar University - Assiut Branch, Pharmacology, Assiut, Cairo, EGYPT.
Herein, Schiff base was synthesized via reaction between 2-bromo-4-(trifluoromethoxy)aniline and 2-hydroxybenzaldehyde. The ligand was reacted with Cu(II) salt to obtain complex. The compounds were characterization using various techniques.
View Article and Find Full Text PDFVet Sci
January 2025
Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
Camel milk is a valuable food source with unique nutritional properties and potential health benefits. This study investigated the influence of high dietary salt on milk composition and fatty acid (FA) profile as well as insulin regulation in dairy camels. Twelve multiparous female camels were used in a crossover design with two treatments: control concentrate (CON; 1.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
The interactions between cellulose nanocrystals and six different polymers (three anionic, two non-ionic, and one cationic) were investigated using rheological measurements of aqueous solutions of nanocrystals and polymers. The experimental viscosity data could be described adequately by a power-law model. The variations in power-law parameters (consistency index and flow behavior index) with concentrations of nanocrystals and polymers were determined for different combinations of nanocrystals and polymers.
View Article and Find Full Text PDFMar Drugs
January 2025
College of Food Science and Engineering, Ningbo University, Ningbo 315211, China.
is an important source of natural β-carotene (containing and isomers) for industrial production. The phytohormone salicylic acid (SA) has been proven to have impacts on the stress resistance of higher plants, but research on microalgae is currently unclear. In this study, the effects of SA on the growth, biochemical composition, antioxidant enzyme activity, key enzymes of β-carotene synthesis, and cis-and trans-isomers of β-carotene in under different salt concentrations were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!