Modifying Cell Membranes with Anionic Polymer Amphiphiles Potentiates Intracellular Delivery of Cationic Peptides.

ACS Appl Mater Interfaces

Department of Biomedical Engineering, Vanderbilt University, PMB 351634, Nashville, Tennessee 37235, United States.

Published: November 2020

Rapid, facile, and noncovalent cell membrane modification with alkyl-grafted anionic polymers was sought as an approach to enhance intracellular delivery and bioactivity of cationic peptides. We synthesized a library of acrylic acid-based copolymers containing varying amounts of an amine-reactive pentafluorophenyl acrylate monomer followed by postpolymerization modification with a series of alkyl amines to afford precise control over the length and density of aliphatic alkyl side chains. This synthetic strategy enabled systematic investigation of the effect of the polymer structure on membrane binding, potentiation of peptide cell uptake, pH-dependent disruption of lipid bilayers for endosome escape, and intracellular bioavailability. A subset of these polymers exhibited p of ∼6.8, which facilitated stable membrane association at physiological pH and rapid, pH-dependent endosomal disruption upon endocytosis as quantified in Galectin-8-YFP reporter cells. Cationic cell penetrating peptide (CPP) uptake was enhanced up to 15-fold in vascular smooth muscle cells in vitro when peptide treatment was preceded by a 30-min pretreatment with lead candidate polymers. We also designed and implemented a new and highly sensitive assay for measuring the intracellular bioavailability of CPPs based on the NanoLuciferase (NanoLuc) technology previously developed for measuring intracellular protein-protein interactions. Using this split luciferase class of assay, polymer pretreatment enhanced intracellular delivery of the CPP-modified HiBiT peptide up to 30-fold relative to CPP-HiBiT without polymer pretreatment ( < 0.05). The overall structural analyses show that polymers containing 50:50 or 70:30 molar ratios of carboxyl groups to alkyl side chains of 6-8 carbons maximized peptide uptake, pH-dependent membrane disruption, and intracellular bioavailability and that this potentiation effect was maximized by pairing with CPPs with high cationic charge density. These results demonstrate a rapid, mild method for polymer modification of cell surfaces to potentiate intracellular delivery, endosome escape, and bioactivity of cationic peptides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082340PMC
http://dx.doi.org/10.1021/acsami.0c13304DOI Listing

Publication Analysis

Top Keywords

intracellular delivery
16
cationic peptides
12
intracellular bioavailability
12
intracellular
8
bioactivity cationic
8
alkyl side
8
side chains
8
uptake ph-dependent
8
endosome escape
8
measuring intracellular
8

Similar Publications

Peptide-Based Complex Coacervates Stabilized by Cation-π Interactions for Cell Engineering.

J Am Chem Soc

January 2025

Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.

Complex coacervation is a form of liquid-liquid phase separation, whereby two types of macromolecules, usually bearing opposite net charges, self-assemble into dense microdroplets driven by weak molecular interactions. Peptide-based coacervates have recently emerged as promising carriers to deliver large macromolecules (nucleic acids, proteins and complex thereof) inside cells. Thus, it is essential to understand their assembly/disassembly mechanisms at the molecular level in order to tune the thermodynamics of coacervates formation and the kinetics of cargo release upon entering the cell.

View Article and Find Full Text PDF

Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.

View Article and Find Full Text PDF

Membrane drug transporters in cancer: From chemoresistance mechanism to therapeutic strategies.

Biochim Biophys Acta Rev Cancer

January 2025

Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China. Electronic address:

Chemoresistance is a multifactorial phenomenon and the primary cause to the ineffectiveness of oncotherapy and cancer recurrence. Membrane drug transporters are crucial for drug delivery and disposition in cancer cells. Changes in the expression and functionality of these transporters lead to decreased intracellular accumulation and reduced toxicity of antineoplastic drugs.

View Article and Find Full Text PDF

Natural phytochemicals reverting M2 to M1 macrophages: A novel alternative Leishmaniasis therapy.

Microb Pathog

January 2025

Immunology lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India. Electronic address:

Introduction: Leishmaniasis is a tropical parasitic disease caused by the protozoan Leishmania which remains a significant global health concern with diverse clinical manifestations. Transmitted through the bite of an infected sandfly, its progression depends on the interplay between the host immune response and the parasite. The disease outcome is linked to macrophage polarisation into M1 and M2 phenotypes.

View Article and Find Full Text PDF

Strategies and Challenges of Cytosolic Delivery of Proteins.

J Drug Target

January 2025

Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.

The cytosolic delivery of therapeutic proteins represents a promising strategy for addressing diseases caused by protein dysfunction. Despite significant advances, efficient delivery remains challenging due to barriers such as cell membrane impermeability, endosomal sequestration, and protein instability. This review summarizes recent progress in protein delivery systems, including physical, chemical, and biological approaches, with a particular focus on strategies that enhance endosomal escape and targeting specificity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!