A pot experiment was conducted to reveal the effects of intercropping a low-cadmium (Cd) accumulating cultivar and a Cd hyperaccumulator on the safe utilization and phytoextraction of Cd-polluted soils. Two cultivars of L. (the low-Cd accumulating cultivar Huajun, and the common cultivar Hanlü), were intercropped with four cultivars of L. (Dwarf Red, Dwarf Yellow, Tall Red, and Tall Yellow). We examined the biomass, photosynthetic characteristics, and Cd accumulation in the plants and available Cd content and dissolved organic carbon (DOC) content in the soils. The results show that under the intercropping treatments, the biomass of decreased significantly and those of increased significantly, compared with the monoculture treatments. When intercropped with , the net photosynthetic rate, stomatal conductance, and transpiration rate in the leaves of decreased significantly, compared with the monoculture treatments. When Huajun was intercropped with Dwarf Red, the shoot Cd content of Huajun significantly decreased by 14.5%, and that of Dwarf Red increased significantly by 36.5% compared with the monoculture. Under the other intercropping treatments, the shoot Cd content of increased significantly, or showed no significant change, and that of showed no significant change. Under the intercropping treatments, the total amount of Cd in the shoot of decreased significantly, and that of increased significantly, compared with the monoculture. There were no significant differences in the Cd extraction ratios between the intercropping treatments and the monoculture of The shoot Cd content of was significantly correlated with soil available Cd content and DOC content (<0.01 and <0.05, respectively). In conclusion, the intercropping treatment of Huajun and Dwarf Red significantly reduced shoot Cd content in and increased that in , and it did not affect the Cd extraction ratio. This is suitable for the safe utilization and phytoextraction of Cd-polluted soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202004245 | DOI Listing |
Insects
December 2024
Julius-Kuehn Institute, Koenigin-Luise-Str. 19, 14195 Berlin, Germany.
Maize productivity has remained low and has worsened in the wake of a changing climate, resulting in new invasive pests, with pests that were earlier designated as minor becoming major and with pathogens being transported by pests and/or entering their feeding sites. A study was conducted in 2021 in the Kisumu and Makueni counties, Kenya, to determine how different maize cropping systems affect insect diversity, insect damage to maize, and insects' ability to spread mycotoxigenic fungi in pre-harvest maize. The field experiments used a randomized complete block design, with the four treatments being maize monocrop, maize intercropped with beans, maize-bean intercrop with the addition of at planting, and push-pull technology.
View Article and Find Full Text PDFFront Plant Sci
December 2024
College of Agronomy and Biotechnology, Southwest University/Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China.
Introduction: Crop rotation of tobacco with other crops could effectively break the negative impact of continuous tobacco cropping, but the mechanisms of intercropping system effects on tobacco, especially on the rhizosphere, are not clear.
Methods: In this study, we investigated the impact of intercropping system on the diversity and function of tobacco metabolites and microorganisms through metabolomic and metagenomic analyses of the tobacco rhizosphere microenvironment intercropped with maize and soybean.
Results: The results showed that the contents of huperzine b, chlorobenzene, and P-chlorophenylalanine in tobacco rhizosphere soils differed significantly among soybean-tobacco and maize-tobacco intercropping system.
Front Plant Sci
December 2024
College of Agronomy, Sichuan Agricultural University/Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China.
Background: Legumes, in the initial event of symbiosis, secrete flavonoids into the rhizosphere to attract rhizobia. This study was conducted to investigate the relationship between crop root exudates and soybean nodule development under intercropping patterns.
Method: A two years field experiments was carried out and combined with pot experiments to quantify the effects of planting mode, i.
BMC Plant Biol
January 2025
College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China.
To investigate the effects of row ratio configurations on intercropping advantages and related rhizosphere microbial communities, a field experiment involving five treatments of different rows of broomcorn millet, i.e., P1M1 (1 row of broomcorn millet intercropped with 1 row of alfalfa), P2M3, P1M2, P1M3 and broomcorn millet alone (SP), was conducted on the Loess Plateau of China.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, Heilongjiang Province 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, Heilongjiang Province 150080, China. Electronic address:
Cadmium (Cd) contamination presents a serious challenges for sustainable agriculture. This study evaluated the combined impact of arbuscular mycorrhizal fungi (AMF) inoculation and intercropping with Solanum nigrum on soil microbial diversity, enzyme activity, and environmental factors in soybean cultivation under high Cd stress. The combined treatment effectively reduced bioavailable Cd in soil, with the acid-soluble Cd fraction at 19.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!