In this study, the relative molecular weight distribution and fluorescent characteristics of the organic matter in sediments during the thermal stratification of a drinking water reservoir were studied. The nitrogen removal, growth performance, and carbon removal ability of an aerobic denitrifier were investigated when the organic matter in sediments was used as a carbon source. The results found that:① during the stratification period in the drinking water reservoir, the organic matter in sediments has a larger proportion of relative molecular mass>100×10. It can be observed that compared with the relative molecular weight distribution in different months, the percentage of macromolecular organic matter in sediments is the lowest in July (44.62%), showing a characteristic of smaller relative molecular weight; ② the organic matter in sediments of the drinking water reservoir was composed of terrestrial humic-like substance component C1 (250 nm, 425 nm), tryptophan and amino acid-like substances component C2 (230 nm/280 nm, 322 nm), and traditional microbial humic-like substances component C3 (250 nm, 340 nm). Component C2 accounted for a higher percentage, and the organic matter in July showed a higher total fluorescence intensity; ③ during the aerobic denitrification process, organic matter in May displayed better characteristics as an electron donor, while organic matter in July exhibited excellent performance as an energy substance and better denitrification characteristics of the strain WGX-9; ④ the aerobic denitrification performance of the strain WGX-9 can be significantly promoted when the organic matter in sediments is a carbon source, compared with natural organic matter, algae organic matter, and actual water of the drinking water reservoir. This study clarifies the characteristics of the organic matter in sediments during the thermal stratification period of the drinking water reservoir and its effect on an aerobic denitrifier. This will provide a scientific basis for the research of nitrogen pollution control in micro-polluted water sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202003045 | DOI Listing |
Sci Rep
December 2024
Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Falmouth, USA.
Coral reef sponges efficiently take up particulate and dissolved organic matter (DOM) from the water column and release compounds such as nucleosides, amino acids, and other dissolved metabolites to the surrounding reef via their exhalent seawater, but the influence of this process on reef picoplankton and nutrient processing is relatively unexplored. Here we examined the impact of sponge exhalent on the reef picoplankon community and subsequent alterations to the reef dissolved metabolite pool. We exposed reef picoplankton communities to a sponge exhalent water mixture (Niphates digitalis and Xestospongia muta) or filtered reef seawater (control) in closed, container-based dark incubations.
View Article and Find Full Text PDFVegetation restoration can be effective in containing gully head advance. However, the effect of vegetation restoration type on soil aggregate stability and erosion resistance at the head of the gully is unclear. In this study, five types of vegetation restoration-Pinus tabulaeformis (PT), Prunus sibirica (PS), Caragana korshinskii (CKS), Hippophae rhamnoides (HR), and natural grassland (NG, the dominant species is Leymus chinensis)-in the gully head were studied.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan. Electronic address:
Visible light photocatalysts hold great promise for water purification, yet research on highly efficient, non-toxic photocatalysts is limited. This study synthesized novel g-CN/AlOOH photocatalytic nanocomposites via thermal condensation, enhancing adsorption and visible light degradation by 36-fold and 11-fold, respectively, compared to g-CN alone. The nanocomposites achieved a 98% removal rate of methyl orange under xenon lamp irradiation (>400 nm) for 1 hour.
View Article and Find Full Text PDFChemosphere
December 2024
Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan 430068, China. Electronic address:
Cyanobacterial blooms are prevalent globally and present a significant threat to water security. Titanium salt coagulants have garnered considerable attention due to their superior coagulation properties and the absence of metal residue risks. This paper explored the influencing factors in the coagulation process of titanium xerogel coagulant (TXC), the alterations in cell activity during floc storage, and the release of cyanobacterial organic matters, thereby determining the application scope of TXC for cyanobacterial water treatment.
View Article and Find Full Text PDFBioresour Technol
December 2024
School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China. Electronic address:
Biodegradable plastics (BPs) and lignite, both rich in organic matter, present significant challenges for efficient conversion into clean energy. This study examined the anaerobic co-digestion of BPs and lignite under controlled laboratory conditions. The results demonstrated that the co-digestion of polylactic acid (PLA) and lignite (at a 1:2 mass ratio, with 5 g PLA and 10 g lignite as the model system) rapidly acclimated to the anaerobic environment, enhancing cumulative biogas production by 57 % compared to the mono-digestion of lignite alone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!