The concentrations of nine metals (As, Cr, Al, Cu, Pb, Zn, Ni, Mn, and Hg), in 23 water samples collected from four main types of water (well, surface river, subterranean stream and blue hole), in the Huixian karst wetland were determined and analyzed to investigate their distributions and health risks. A multivariate statistical analysis was used to study the distribution characteristics of the metals. A human health risk assessment model was developed to assess the health risks. The results found that the mean concentrations of metals in water from the Huixian karst wetland were in the order:Al > Mn > Zn > Cr > Ni > As > Hg > Cu > Pb. The maximum concentrations of Hg (1.08 μg·L) in the well water, Hg (0.78 μg·L) and Mn (259.00 μg·L) in the surface river water, and Hg (0.47 μg·L) and Al (300.00 μg·L) in the blue hole water all exceeded the corresponding standard limits. The metal concentrations in the subterranean stream samples were all within the regulated limits. For the nine metals, the well water and the subterranean stream water qualities were better than those of the surface river and the blue hole. The results of the multivariate statistical analysis showed that the concentrations of Cr, Ni, Cu, and Zn in the well water were mainly related to the regional geological background, while the concentrations of Al and Pb in the blue hole water were mainly affected by pyrite mining and residential activities. The concentrations of As and Mn in rivers may be affected by tourism activity, aquaculture and river sediments. The results of the health risk assessment on water through the drinking and skin penetration pathway indicated that the total health risks order was:well > subterranean stream > blue hole > surface river. The total health risks values of well water as drinking water for adults (6.11×10 a) and children (6.67×10 a) exceeded the maximum allowance level (5.0×10 a). Cr was the main metal element that causes carcinogenic risks. For drinking water safety, the concentrations of Hg and Cr in well water should be controlled before drinking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202003212 | DOI Listing |
Chem Asian J
December 2024
SN Bose National Centre for Basic Sciences, Condensed Matter and Materials Physics, JD Block, Sector III, 700106, Salt Lake City, INDIA.
Mass-fraction-optimized heterojunction composites featuring precisely engineered interfaces and mesoporous structures are crucial for improving light absorption, minimizing electron-hole recombination, and boosting overall catalytic efficiency. Herein, highly efficient mesoporous-NiFe2O4@g-C3N4 heterojunctions were developed by embedding p-type NiFe2O4 nanoparticles (NPs) within n-type porous ultrathin g-C3N4 (p-uCN) nanosheets. The optimized NiFe2O4@g-C3N4, loaded with 20wt% magnetic counterparts, exhibits exceptional photocatalytic methylene blue degradation, achieving the highest performance in both photocatalytic and photo-Fenton processes with rate constants of 0.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States.
Co-doped ZIF-8 as a water-stable visible light photocatalyst was prepared by using a one-pot, fast, cost-effective, and environmentally friendly method. The band structure of ZIF-8 was tuned through the incorporation of different percentages of cobalt to attain an optimal band gap ( ) that enables the activation of ZIF-8 under visible light and minimizes the recombination of photogenerated charge carriers. A magnetic composite of Co-doped ZIF-8 was also synthesized to facilitate catalyst recycling and reusability through the application of an external magnetic field.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India. Electronic address:
The study presents the fabrication and superior photoactivity of a ternary g-CN/FeVO/AgBr heterojunction nanocomposite, synthesized via a chemical precipitation method for effective degradation of tetracycline (TC) and Victoria Blue (VB) dye under light illumination. The morphology and the crystal size of the synthesized nanocomposite were characterized by using FESEM and XRD and the calculated grain size (100.39 nm) is larger than the crystal size (48.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Department of Chemistry, National Changhua University of Education, 1 Jin-De Road, Changhua City 50007, Taiwan.
This study developed a MgBiO-based photocatalyst via low-temperature hydrothermal synthesis. AgBr was co-precipitated onto MgBiO, and silver nanoparticles (AgNPs) were photo-reduced onto the surface. The photocatalytic performance, assessed by methylene blue (MB) degradation under white-light LED irradiation (2.
View Article and Find Full Text PDFSmall
December 2024
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China.
Despite the remarkable advancements in perovskite light-emitting diode (PeLED) technology, the development of blue PeLEDs has lagged. The primary bottleneck lies in the difficulty of finding hole transport materials (HTMs) that can both match the energy levels of blue perovskite materials and exhibit efficient hole transport performance. Herein, a novel non-conjugated polyethylene carbazole-based polymer (P-AGCz) is developed that has excellent solution processability and serves as an efficient dopant-free HTM for PeLEDs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!