Quantitative methods in microscopy to assess pollen viability in different plant taxa.

Plant Reprod

Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli, 25, 10125, Turin, Italy.

Published: December 2020

High-quality pollen is a prerequisite for plant reproductive success. Pollen viability and sterility can be routinely assessed using common stains and manual microscope examination, but with low overall statistical power. Current automated methods are primarily directed towards the analysis of pollen sterility, and high throughput solutions for both pollen viability and sterility evaluation are needed that will be consistent with emerging biotechnological strategies for crop improvement. Our goal is to refine established labelling procedures for pollen, based on the combination of fluorescein (FDA) and propidium iodide (PI), and to develop automated solutions for accurately assessing pollen grain images and classifying them for quality. We used open-source software programs (CellProfiler, CellProfiler Analyst, Fiji and R) for analysis of images collected from 10 pollen taxa labelled using FDA/PI. After correcting for image background noise, pollen grain images were examined for quality employing thresholding and segmentation. Supervised and unsupervised classification of per-object features was employed for the identification of viable, dead and sterile pollen. The combination of FDA and PI dyes was able to differentiate between viable, dead and sterile pollen in all the analysed taxa. Automated image analysis and classification significantly increased the statistical power of the pollen viability assay, identifying more than 75,000 pollen grains with high accuracy (R = 0.99) when compared to classical manual counting. Overall, we provide a comprehensive set of methodologies as baseline for the automated assessment of pollen viability using fluorescence microscopy, which can be combined with manual and mechanized imaging systems in fundamental and applied research on plant biology. We also supply the complete set of pollen images (the FDA/PI pollen dataset) to the scientific community for future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648740PMC
http://dx.doi.org/10.1007/s00497-020-00398-6DOI Listing

Publication Analysis

Top Keywords

pollen viability
20
pollen
16
viability sterility
8
statistical power
8
pollen grain
8
grain images
8
viable dead
8
dead sterile
8
sterile pollen
8
viability
5

Similar Publications

Decay of self-incompatibility within a lifespan in Physalis acutifolia (Solanaceae).

Plant Reprod

January 2025

Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street, Boulder, CO, 80309, USA.

Self-incompatibility decays with age in plants of Physalis acutifolia, and plants that have transitioned to selfing produce fewer seeds but with comparable viability. Self-compatibility in this system is closely related to flower size, which is in turn dependent on the direction of the cross, suggesting parental effects on both morphology and compatibility. The sharpleaf groundcherry, Physalis acutifolia, is polymorphic for self-compatibility, with naturally occurring self-incompatible (SI) and self-compatible (SC) populations.

View Article and Find Full Text PDF

Ex situ conservation of plant genetic resources (PGR) plays a crucial role in sustainable growth and development, as highlighted by the Global Strategy for Plant Conservation (GSPC). Seed genebanks, a key component of ex situ conservation, have been instrumental in preserving plant diversity. However, challenges arise with the conservation of non-orthodox (recalcitrant and intermediate) seeds and vegetative tissues, which are not amenable to storage in traditional genebanks at temperatures of -20°C.

View Article and Find Full Text PDF

Tartary buckwheat (Fagopyrum tataricum), a functional grain known for its medicinal and nutritional properties, has garnered significant attention due to its high flavonoid content and unique health benefits. Heat stress during the flowering stage can lead to sterility in Tartary buckwheat, resulting in reduced yields. This study investigates the effects of a treatment (30/27 °C for 7 days) on flower development, fertility, stress physiology, and gene expression in Tartary buckwheat, while also validating the efficacy of hormone treatments in alleviating the negative effects of heat stress.

View Article and Find Full Text PDF

Pollen germination and pollen tube (PT) growth are extremely sensitive to high temperatures. During heat stress (HS), global translation shuts down and favors the maintenance of the essential cellular proteome for cell viability and protection against protein misfolding. Here, we demonstrate that under normal conditions, the Arabidopsis (Arabidopsis thaliana) eukaryotic translation initiation factor subunit eif3m1/eif3m2 double mutant exhibits poor pollen germination, loss of PT integrity and an increased rate of aborted seeds.

View Article and Find Full Text PDF

The shift from outcrossing to predominantly selfing is one of the most common transitions in plant evolution. This evolutionary shift has received considerable attention from biologists; however, this work has almost exclusively been focused on animal-pollinated systems. Despite the seminal ecological and economic importance of wind-pollinated species, the mechanisms controlling the degree of outcrossing in wind-pollinated taxa remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!