Antimania-Like Effect of Regulating the Glutamatergic Neurotransmission in REM-Sleep Deprivation Rats.

Biomed Res Int

Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.

Published: May 2021

Previous studies have shown the therapeutic properties of ginseng and ginsenosides on hyperactive and impulsive behaviors in several psychiatric diseases. Herein, we investigated the effect of Meyer (PG) on hyperactive/impulsive behaviors in a manic-like animal model, sleep deprivation (SD) rats. Male rats were sleep-deprived for 48 h, and PG (200 mg/kg) was administered for 4 days, from 2 days prior to the start of SD to the end date of SD. The elevated plus maze (EPM) test showed that PG alleviated the increased frequency of entries into and spent time within open arms by SD. In order to investigate the molecular mechanism on this effect of PG, we assessed differentially expressed genes (DEGs) in the prefrontal cortex of PG-treated SD rats using RNA sequencing (RNA-seq) and performed gene-enrichment analysis for DEGs. The gene-enrichment analysis showed that PG most prominently affected the glutamatergic synapse pathway. Among the glutamatergic synapse pathway genes, particularly, PG enhanced the expressions of glutamate transporter Slc1a3 and Slc1a2 reduced in SD rats. Moreover, we found that PG could inhibit the SD-induced phosphorylation of the NR2A subunit of the NMDA receptor. These results suggested that PG might have a therapeutic effect against the manic-like behaviors, regulating the glutamatergic neurotransmission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7586145PMC
http://dx.doi.org/10.1155/2020/3636874DOI Listing

Publication Analysis

Top Keywords

regulating glutamatergic
8
glutamatergic neurotransmission
8
deprivation rats
8
gene-enrichment analysis
8
glutamatergic synapse
8
synapse pathway
8
rats
5
antimania-like regulating
4
glutamatergic
4
neurotransmission rem-sleep
4

Similar Publications

The Hao-Fountain syndrome protein USP7 regulates neuronal connectivity in the brain via a novel p53-independent ubiquitin signaling pathway.

Cell Rep

January 2025

Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA. Electronic address:

Mutation or deletion of the deubiquitinase USP7 causes Hao-Fountain syndrome (HAFOUS), which is characterized by speech delay, intellectual disability, and aggressive behavior and highlights important unknown roles of USP7 in the nervous system. Here, we conditionally delete USP7 in glutamatergic neurons in the mouse forebrain, triggering disease-relevant phenotypes, including sensorimotor deficits, impaired cognition, and aggressive behavior. Although USP7 deletion induces p53-dependent neuronal apoptosis, most behavioral abnormalities in USP7 conditional knockout mice persist following p53 loss.

View Article and Find Full Text PDF

Background: N-methyl-D-aspartate type glutamate receptors (NMDARs) are fundamental to neuronal physiology and pathophysiology. The prefrontal cortex (PFC), a key region for cognitive function, is heavily implicated in neuropsychiatric disorders, positioning the modulation of its glutamatergic neurotransmission as a promising therapeutic target. Our recently published findings indicate that AT receptor activation enhances NMDAR activity in layer V pyramidal neurons of the rat PFC.

View Article and Find Full Text PDF

Antisocial personality disorder:Failure to balance excitation/inhibition?

Neuropharmacology

January 2025

Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany; Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.

While healthy brain function relies on a dynamic but tightly regulated interaction between excitation (E) and inhibition (I), a spectrum of social cognition disorders, including antisocial behavior and antisocial personality disorder (ASPD), frequently ensuing from irregular neurodevelopment, may be associated with E/I imbalance and concomitant alterations in neural connectivity. Technological advances in the evaluation of structural and functional E/I balance proxies in clinical settings and in human cell culture models provide a general basis for identification of biomarkers providing a powerful concept for prevention and intervention across different dimensions of mental health and disease. In this perspective we outline a framework for research to characterize neurodevelopmental pathways to antisocial behavior and ASPD driven by (epi)genetic factors across life, and to identify molecular targets for preventing the detrimental effects of cognitive dysfunction and maladaptive social behavior, considering psychosocial experience; to validate signatures of E/I imbalance and altered myelination proxies as biomarkers of pathogenic neural circuitry mechanisms to determine etiological processes in the transition from mental health to antisocial behavior and ASPD and in the switch from prevention to treatment; to develop a neurobiologically-grounded integrative model of antisocial behavior and ASPD resultant of disrupted E/I balance, allowing to establish objective diagnoses and monitoring tools, to personalize prevention and therapeutic decisions, to predict treatment response, and thus counteract relapse; and finally, to promote transformation of dimensional disorder taxonomy and to enhance societal awareness and reception of the neurobiological basis of antisocial behavior and ASPD.

View Article and Find Full Text PDF

The regulation of glutamatergic nervous system in sleep-wake states and general anesthesia.

Brain Res Bull

January 2025

Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China. Electronic address:

The sleep-wake states and general anesthesia share many neurophysiological similarities, as both involve reversible changes in consciousness and modulation of brain activity. This paper reviews the role of glutamatergic neurons, the brain's primary excitatory neurons, in regulating sleep-wake states and general anesthesia. We discuss the involvement of glutamatergic neurons across various brain regions, including the brainstem, basal forebrain, thalamus, hypothalamus, and cortex, highlighting their contributions to physiological sleep-wake and anesthesia modulation.

View Article and Find Full Text PDF

Introduction: Stress-evoked dysfunctions of the frontal cortex (FC) are correlated with changes in the functioning of the glutamatergic system, and evidence demonstrates that noradrenergic transmission is an important regulator of this process. In the current study, we adopted a restraint stress (RS) model in male Wistar rats to investigate whether the blockade of β1 adrenergic receptors (β1AR) with betaxolol (BET) in stressed animals influences the body's stress response and the expression of selected signaling proteins in the medial prefrontal cortex (mPFC).

Methods: The study was divided into two parts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!