A core set of 190 rice landraces were used to decipher the genetic structure and to discover the chromosomal regions containing QTLs, affecting the grain micro-nutrients, fatty acids, and yield-related traits by using 148 molecular markers in this study. Landraces were categorized into three sub-groups based on population stratification study and followed by neighbor-joining tree and principal component analysis. Analysis of variance revealed abundant variations among the landraces for studied traits with less influence of environmental factors. Genome Wide Association Studies (GWAS) revealed 22 significant and consistent QTLs through marker trait association (MTAs) for 12 traits based on 2 years and pooled analysis. Out of 22 QTLs, three have been reported earlier while 19 QTLs are novel. Interestingly, 13 QTLs out of 22 were explained more than 10% phenotypic variance. Association of RM1148 and RM205 with Days to 50% flowering was comparable with flowering control genes and , respectively. Similarly, Zn content was associated with RM44, which is situated within the QTL . Moreover, significant association of RM25 with oleic acid content was closely positioned with QTL Association of RM7434 with grain yield/plant; RM184 with spikelet fertility %; R3M10, R9M42 with hundred seed weight; RM536, RM17467, RM484, RM26063 with Fe content; RM44, RM6839 with Zn content are the major outcomes of this study. In addition, association of R11M23 with days to 50% flowering, panicle length and total spikelets per panicle are explained the possible occurrence of pleiotropism among these traits. Prominent rice landraces viz Anjani (early maturity); Sihar (extra dwarf); Gangabaru (highest grain yield/plant); Karhani (highest iron content); Byalo-2 (highest zinc content) and Kadamphool (highest oleic acid) were identified through this study. The present study will open many avenues towards utilization of these QTLs and superior landraces in rice breeding for developing nutrition-rich high yielding varieties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585584 | PMC |
http://dx.doi.org/10.1007/s13205-020-02467-z | DOI Listing |
Breed Sci
September 2024
Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan.
Green rice leafhopper (GRH, Uhler) is a serious insect pest of rice in the temperate regions of Asia. Myanmar has a high genetic diversity and is located at the center of the origin of rice. To understand the genetic architecture of GRH resistance in Myanmar rice landraces, a genome-wide association study (GWAS) was performed using a diversity panel collected from diverse geographical regions.
View Article and Find Full Text PDFFront Plant Sci
January 2025
South Asia Hub, International Rice Research Institute (IRRI), International Crops Institute for the Semi-Arid Tropics (ICRISAT) Campus, Hyderabad, Telangana, India.
In the rapid climate change scenario and subsequent rainfall patterns, drought has emerged as a bottleneck for crop production across crops, especially in rainfed rice. Drought significantly affects the development and production of most modern rice cultivars. Thus, recent breeding efforts have aimed to integrate drought tolerance traits in existing rice varieties through conventional and molecular approaches.
View Article and Find Full Text PDFSci Rep
January 2025
Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
Pigmented rice (Oryza sativa L.) is recognized as a source of natural antioxidant compounds, such as flavonoids, oryzanol, tocopherol, and anthocyanin. Because of their nutritional benefits, anthocyanin-enriched or pigmented rice varieties are feasible alternatives for promoting human health.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Crop Production and Landscape Management, Ebonyi State University, Abakaliki, Nigeria.
PLoS One
December 2024
UMR DIADE, IRD, CIRAD, Université de Montpellier, Montpellier, France.
Rice (Oryza sativa L.) is a staple food for half of the world's population, and its biofortification is a key factor in fighting micronutrient malnutrition. However, harmful heavy metals tend to accumulate in rice grains due to soil and water contamination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!