Individuality in clinical gait analysis is often quantified by an individual's kinematic deviation from the norm, but it is unclear how these deviations generalize across different walking speeds and ground slopes. Understanding individuality across tasks has important implications in the tuning of prosthetic legs, where clinicians have limited time and resources to personalize the kinematic motion of the leg to therapeutically enhance the wearer's gait. This study seeks to determine an efficient way to predictively model an individual's kinematics over a continuous range of slopes and speeds given only one personalized task at level ground. We were able to predict the kinematics of able-bodied individuals at a wide variety of conditions that were not specifically tuned. Applied to 10 human subjects, the individualization method reduced the RMSE between the model and subject's kinematics over all tasks by an average of 2% (max 52%) at the ankle, 27% (max 59%) at the knee, and 45% (max 83%) at the hip. Our results indicate that knowing how an individual subject differs from the average subject at level ground alone is enough information to improve kinematic predictions across all tasks. This research offers a new method for personalizing robotic prosthetic legs over a variety of tasks without the need of an engineer, which could make these complex devices more clinically viable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591140PMC
http://dx.doi.org/10.1109/biorob49111.2020.9224413DOI Listing

Publication Analysis

Top Keywords

kinematics continuous
8
continuous range
8
range slopes
8
slopes speeds
8
prosthetic legs
8
level ground
8
predicting individualized
4
individualized joint
4
kinematics
4
joint kinematics
4

Similar Publications

A hyperelastic torque-reversal mechanism for soft joints with compression-responsive transient bistability.

Sci Robot

January 2025

Biorobotics Laboratory, Soft Robotics Research Center, Institute of Advanced Machines and Design, Department of Mechanical Engineering, Institute of Engineering, Seoul National University, Seoul, Republic of Korea.

Snap-through, a rapid transition of a system from an equilibrium state to a nonadjacent equilibrium state, is a valuable design element of soft devices for converting a monolithic stimulus into systematic responses with impulsive motions. A common way to benefit from snap-through is to embody it within structures and materials, such as bistable structures. Torque-reversal mechanisms discovered in nature, which harness snap-through instability via muscular forces, may have comparative advantages.

View Article and Find Full Text PDF

The human body consists of many different soft biological tissues that exhibit diverse microstructures and functions and experience diverse loading conditions. Yet, under many conditions, the mechanical behaviour of these tissues can be described well with similar nonlinearly elastic or inelastic constitutive relations, both in health and some diseases. Such constitutive relations are essential for performing nonlinear stress analyses, which in turn are critical for understanding physiology, pathophysiology and even clinical interventions, including surgery.

View Article and Find Full Text PDF

In this paper, we report an investigation into the dynamics of laser-induced particle sputtering on the rear surface of fused silica at high-fluence laser systems. Using time-resolved pump-probe and continuous imaging techniques, we capture the entire sputtering process over a broader timescale. The morphology, kinematics, and their correlation with damage growth are analyzed through microscopic imaging.

View Article and Find Full Text PDF

: The aim of this work was to assess the effect of a conservative therapeutic intervention on the changes in the foot load distribution in people with femoroacetabular impingement (FAI) syndrome practising long-distance running. : The study involved 44 men, aged 30 to 50 years, practising long-distance running. Two rounds of tests were conducted in the Laboratory of Biokinetics of the AWF in Kraków.

View Article and Find Full Text PDF

Background: A surgical robot with force feedback can guarantee precise and gentle manipulation for endometrial repair, ensuring the effectiveness and safety of the manipulation. However, the design of force sensors for surgical robots is challenging due to the limited anatomical space and the requirement for continuous rotation.

Methods: This paper presents a novel force-sensing surgical instrument for endometrial repair, including an inner scraping instrument and an outer force sensing sheath.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!