Diabetic encephalopathy is a type of central diabetic neuropathy resulting from diabetes mainly manifested as cognitive impairments. However, its underlying pathogenesis and effective treatment strategies remain unclear. In the present study, we investigated the effect of Lipin1, a phosphatidic acid phosphatase enzyme, on the pathogenesis of diabetic encephalopathy. We found that , Lipin1 exerts protective effects on high glucose-induced reductions of PC12 cell viability, while , Lipin1 is downregulated within the CA1 hippocampal region in a type I diabetes rat model. Increased levels of Lipin1 within the CA1 region are accompanied with protective effects including amelioration of dendritic spine and synaptic deficiencies, phosphorylation of the synaptic plasticity-related proteins, LIM kinase 1 (p-limk1) and cofilin, as well as increases in the synthesis of diacylglycerol (DAG), and the expression of phosphorylated protein kinase D (p-PKD). These effects are associated with the rescue of cognitive disorders as shown in this rat model of diabetes. In contrast, knockdown of Lipin1 within the CA1 region enhanced neuronal abnormalities and the genesis of cognitive impairment in rats. These results suggest that Lipin1 may exert neuroprotective effects involving the PKD/Limk/Cofilin signaling pathway and may serve as a potential therapeutic target for diabetic encephalopathy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7586151 | PMC |
http://dx.doi.org/10.1155/2020/1723423 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!