Vitellogenesis in crustaceans is an energy-consuming process. Though the underlying mechanisms of ovarian maturation in decapod Crustacea are still unclear, evidence indicates the process to be regulated by antagonistically-acting inhibitory and stimulating factors specifically originating from X-organ/sinus gland (XO/SG) complex. Among the reported neuromediators, neuropeptides belonging to the crustacean hyperglycemic hormone (CHH)-family have been studied extensively. The structure and dynamics of inhibitory action of vitellogenesis-inhibiting hormone (VIH) on vitellogenesis have been demonstrated in several species. Similarly, the stimulatory effects of other neuropeptides of the CHH-family on crustacean vitellogenesis have also been validated. Advancement in transcriptomic sequencing and comparative genome analysis has led to the discovery of a large number of neuromediators, peptides, and putative peptide receptors having pleiotropic and novel functions in decapod reproduction. Furthermore, differing research strategies have indicated that neurotransmitters and steroid hormones play an integrative role by stimulating neuropeptide secretion, thus demonstrating the complex intertwining of regulatory factors in reproduction. However, the molecular mechanisms by which the combinatorial effect of eyestalk hormones, neuromediators and other factors coordinate to regulate ovarian maturation remain elusive. These multifunctional substances are speculated to control ovarian maturation possibly via the autocrine/paracrine pathway by acting directly on the gonads or by indirectly exerting their stimulatory effects by triggering the release of a putative gonad stimulating factor from the thoracic ganglion. Acting through receptors, they possibly affect levels of cyclic nucleotides (cAMP and cGMP) and Ca in target tissues leading to the regulation of vitellogenesis. The "stimulatory paradox" effect of eyestalk ablation on ovarian maturation continues to be exploited in commercial aquaculture operations, and is outweighed by the detrimental physiological effects of this procedure. In this regard, the development of efficient alternatives to eyestalk ablation based on scientific knowledge is a necessity. In this article, we focus principally on the signaling pathways of positive neuromediators and other factors regulating crustacean reproduction, providing an overview of their proposed receptor-mediated stimulatory mechanisms, intracellular signaling, and probable interaction with other hormonal signals. Finally, we provide insight into future research directions on crustacean reproduction as well as potential applications of such research to aquaculture technology development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7573297PMC
http://dx.doi.org/10.3389/fendo.2020.577925DOI Listing

Publication Analysis

Top Keywords

ovarian maturation
16
molecular mechanisms
8
mechanisms ovarian
8
decapod crustacea
8
stimulatory effects
8
neuromediators factors
8
eyestalk ablation
8
crustacean reproduction
8
ovarian
5
factors
5

Similar Publications

Background: The gonadotropin-releasing hormone antagonist (GnRH-ant) protocol is associated with few oocytes retrieved, few mature oocytes and poor endometrial receptivity. Omission of GnRH-ants on trigger day seems unlikely to induce preovulation and may improve outcomes in the GnRH-ant protocol. This study aimed to systematically evaluate the effects of GnRH-ant cessation on trigger day on in vitro fertilisation outcomes following the GnRH-ant protocol.

View Article and Find Full Text PDF

Comparison of large single and small multiple doses of cyclophosphamide exposure in mice during early prepubertal age on fertility outcome.

Sci Rep

December 2024

Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal. Manipal Academy of Higher Education, Manipal, 576 104, India.

Cyclophosphamide (CY) exposure is known to affect the ovary and impair fertility. Clinically, treatment is generally given over multiple doses, but research models have generally used single doses. The relative effects of administering multiple small doses of CY in the prepubertal period are not elucidated.

View Article and Find Full Text PDF

Reproductive Health in Women with Major β-Thalassemia: Evaluating Ovarian Reserve and Endocrine Complications.

Metabolites

December 2024

IVF Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece.

Thalassemia is an autosomal recessive hereditary chronic hemolytic anemia characterized by a partial or complete deficiency in the synthesis of alpha- or beta-globin chains, which are essential components of adult hemoglobin. Mutations in the globin genes lead to the production of unstable globin chains that precipitate within cells, causing hemolysis. This shortens the lifespan of mature red blood cells (RBCs) and results in the premature destruction of RBC precursors in the bone marrow.

View Article and Find Full Text PDF

In this study, we investigated the regulatory roles of the () gene in the reproductive process of female . Its total cDNA length was 1848 bp, encoding for 460 amino acids. It contained conserved domains typical of epoxide hydrolases, such as the Abhydrolase family domain, the EHN epoxide hydrolase superfamily domain, and the "WWG" and "HGWP" motifs.

View Article and Find Full Text PDF

Ruptured Ovarian Mature Cystic Teratoma with Adenocarcinoma Transformation: A Case Report.

Int J Womens Health

December 2024

Department of Gynecology, Rizhao People's Hospital, Rizhao, Shandong Province, 276800, People's Republic of China.

Purpose: Ovarian mature cystic teratoma (MCT) is the most common ovarian tumor, and only a small fraction undergoes malignant transformation. The most prevalent malignant type of the ovary is squamous cell carcinoma, followed by adenocarcinoma. However, ruptured ovarian mature cystic teratoma with adenocarcinoma transformation is extremely rare.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!