Three-dimensional surface printing method for interconnecting electrodes on opposite sides of substrates.

Sci Rep

Department of Electronic Materials and Devices Engineering, Soonchunhyang University, 22, Soonchunhyang-ro, Asan City, Chungnam, 31538, South Korea.

Published: October 2020

As the application of the direct printing method becomes diversified, printing on substrates with non-flat surfaces is increasingly required. However, printing on three-dimensional surfaces suffers from a number of difficulties, which include ink flow due to gravity, and the connection of print lines over sharp edges. This study presents an effective way to print a fine pattern (~ 30 μm) on three different faces with sharp edge boundaries. The method uses a deflectable and stretchable jet stream of conductive ink, which is produced by near-field electrospinning (NFES) technique. Due to added polymer in the ink, the jet stream from the nozzle is less likely to be disconnected, even when it is deposited over sharp edges of objects. As a practical industrial application, we demonstrate that the method can be effectively used for recent display applications, which require the connection of electrical signal and power on both sides of the glass. When the total length of printed lines along the 'Π' shaped glass surfaces was 1.2 mm, we could achieve the average resistance of 0.84 Ω.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596720PMC
http://dx.doi.org/10.1038/s41598-020-75556-xDOI Listing

Publication Analysis

Top Keywords

printing method
8
sharp edges
8
jet stream
8
three-dimensional surface
4
printing
4
surface printing
4
method
4
method interconnecting
4
interconnecting electrodes
4
electrodes opposite
4

Similar Publications

Blood components play a crucial role in maintaining human health and accurately detecting them is essential for medical diagnostics. A cutting-edge sensor utilizing PCF revealed to precisely identify a wide range of blood components with WBCs (white blood cells), RBCs (red blood cells), HB (hemoglobin), platelets, and plasma. A numerical analysis was performed using COMSOL Multiphysics software to assess the capabilities of the sensor.

View Article and Find Full Text PDF

Evaluation of Healthcare Outcomes of Patients Treated with 3D-Printed-Titanium and PEEK Cages During Fusion Procedures in the Lumbar Spine.

Med Devices (Auckl)

January 2025

MedTech Epidemiology and Real-World Data Science, Johnson & Johnson, Raynham, Massachusetts & New Brunswick, New Jersey, USA.

Purpose: The objective of this observational, real-world study was to describe reoperation, revision, index healthcare utilization and hospital costs among patients treated with PEEK (polyetheretherketone) or 3D-printed-titanium cages during lumbar/lumbosacral posterior fusion procedures, either TLIF (transforaminal lumbar interbody fusion) or PLIF (posterior lumbar interbody fusion). Statistical comparisons were not conducted.

Methods: This was a descriptive, retrospective, observational study.

View Article and Find Full Text PDF

Optical character recognition (OCR) is vital in digitizing printed data into a digital format, which can be conveniently used for various purposes. A significant amount of work has been done in OCR for well-resourced languages like English. However, languages like Urdu, spoken by a large community, face limitations in OCR due to a lack of resources and the complexity and diversity of handwritten scripts.

View Article and Find Full Text PDF

Purpose: The study conducts a comparative analysis between two prominent methods for fabricating composites for bone scaffolds-the (solid) solvent method and the solvent-free (melting) method. While previous research has explored these methods individually, this study provides a direct comparison of their outcomes in terms of physicochemical properties, cytocompatibility, and mechanical strength. We also analyse their workflow and scalability potentials.

View Article and Find Full Text PDF

3D-printed devices for multiplexed semi-quantitative competitive lateral flow immunoassays.

Anal Methods

January 2025

Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.

Lateral flow immunoassays (LFIAs) are widely used for the simple and rapid detection of various targets at the point of need. However, LFIAs enabling the simultaneous detection of multiple analytes and the possibility for naked-eye semi-quantitative analysis are facing various challenges, including the requirement of large sample volumes, low efficiency, and accuracy. This is particularly the case for the competitive immunoassay format targeting the detection of low molecular weight compounds, such as, for example, drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!