Snow water scarcity induced by record-breaking warm winter in 2020 in Japan.

Sci Rep

Center for Environmental Remote Sensing (CEReS), Chiba University, Chiba, 263-8522, Japan.

Published: October 2020

This study highlights the severity of the low snow water equivalent (SWE) and remarkably high temperatures in 2020 in Japan, where reductions in SWE have significant impacts on society due to its importance for water resources. A continuous 60-year land surface simulation forced by reanalysis data revealed that the low SWE in many river basins in the southern snowy region of mainland Japan are the most severe on record. The impact of the remarkably high temperatures in 2020 on the low SWE was investigated by considering the relationships among SWE, temperature, and precipitation. The main difference between the 2020 case and prior periods of low SWE is the record-breaking high temperatures. Despite the fact that SWE was the lowest in 2020, precipitation was much higher than that in 2019, which was one of the lowest SWE on record pre-2020. The results indicate the possibility that even more serious low-SWE periods will be caused if lower precipitation and higher temperatures occur simultaneously.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596238PMC
http://dx.doi.org/10.1038/s41598-020-75440-8DOI Listing

Publication Analysis

Top Keywords

high temperatures
12
low swe
12
snow water
8
2020 japan
8
swe
8
remarkably high
8
temperatures 2020
8
precipitation higher
8
0
5
water scarcity
4

Similar Publications

Photolithography is the most widely used micropatterning technique at the micro- and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous-based toxic substances that require harsh conditions for processing, limiting the development of biofunctional and biocompatible micropatterns. In this study, a protein-based aqueous photoresist derived from chemically modified silk fibroin named SAMA, capable of achieving high-resolution micropatterning (<1.

View Article and Find Full Text PDF

Mechanical and thermal responsive chiral photonic cellulose hydrogels for dynamic anti-counterfeiting and optical skin.

Mater Horiz

January 2025

Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.

Dynamic responsive structural colored materials have drawn increased consideration in a wide range of applications, such as colorimetric sensors and high-safety tags. However, the sophisticated interactions among the individual responsive parts restrict the advanced design of multimodal responsive photonic materials. Inspired by stimuli-responsive color change in chameleon skin, a simple and effective photo-crosslinking strategy is proposed to construct hydroxypropyl cellulose (HPC) based hydrogels with multiple responsive structured colors.

View Article and Find Full Text PDF

Metal-free molecular perovskites have shown great potential for X-ray detection due to their tunable chemical structures, low toxicity, and excellent photophysical properties. However, their limited X-ray absorption and environmental instability restrict their practical application. In this study, cesium-based molecular perovskites (MDABCO-CsX, X = Cl, Br, I) are developed by introducing Cs at the B-site to enhance X-ray absorption while retaining low toxicity.

View Article and Find Full Text PDF

Temporal dynamics of airborne fungi in Swedish forest nurseries.

Appl Environ Microbiol

January 2025

Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.

In Sweden, reforestation of managed forests relies predominantly on planting nursery-produced tree seedlings. However, the intense production using containerized cultivation systems (e.g.

View Article and Find Full Text PDF

The precise identification of various toxic gases is important to prevent health and environmental hazards using cost-effective, efficient, metal oxide-based chemiresistive sensing methods. This study explores the sensing properties of a chemiresistive sensor based on a ZnSnO-SnO microcomposite for detecting -butanol vapours. The microcomposite, enriched with oxygen vacancies, was thoroughly characterized, confirming its structure, crystallinity, morphology and elemental composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!