MicroRNA-200b/c-3p regulate epithelial plasticity and inhibit cutaneous wound healing by modulating TGF-β-mediated RAC1 signaling.

Cell Death Dis

Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.

Published: October 2020

Cutaneous wound healing is pivotal for human skin to regain barrier function against pathogens. MicroRNAs (miRNAs) have been found to play regulatory roles in wound healing. However, the mechanism of miRNA regulation remains largely unknown. In this study, we focused on microRNA-200b/c-3p (miR-200b/c-3p) whose expression was abundant in intact epidermis, but dramatically decreased in skin wounds. In silico prediction identified RAC1 as a potential miR-200b/c-3p target. Luciferase reporter assay confirmed that miR-200b/c-p repressed RAC1 by direct targeting to its mRNA 3'UTR. Consistently, miR-200b/c-3p expression was discordantly related to RAC1 protein level during wound healing. Forced miR-200b/c-3p expression repressed RAC1 and inhibited keratinocyte migration as well as re-epithelialization in a mouse back skin full-thickness wound healing model. Mechanistically, miR-200b/c-3p modulated RAC1 to inhibit cell migration by repressing lamellipodia formation and intercellular adhesion dissolution in keratinocytes. Furthermore, we found that TGF-β1, which was highly expressed in skin wounds, contributed to the downregulation of miR-200b/c-3p in wound edge keratinocytes. Taken together, miR-200b/c-3p-mediated RAC1 repression inhibited keratinocyte migration to delay re-epithelialization. TGF-β1 induction attenuated miR-200b/c-3p regulation of RAC1 signaling in cutaneous wounds and the repression of miR-200b/c-3p accelerated keratinocyte migration to promote wound healing. Our data provide new insight into how miR-200b/c-3p affects keratinocyte migration and highlight the potential of miR-200b/c-3p targeting for accelerating wound healing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596237PMC
http://dx.doi.org/10.1038/s41419-020-03132-2DOI Listing

Publication Analysis

Top Keywords

wound healing
28
keratinocyte migration
16
mir-200b/c-3p expression
12
mir-200b/c-3p
10
wound
8
cutaneous wound
8
rac1
8
rac1 signaling
8
signaling cutaneous
8
skin wounds
8

Similar Publications

The objective of this systematic review and meta-analysis is to assess the efficacy of the biodegradable temporising matrix (BTM) (NovoSorb; PolyNovo Biomaterials Pty Ltd, Port Melbourne, Victoria, Australia) in the reconstruction of complex upper extremity wounds. The authors conducted a systematic review and meta-analysis as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines assessing the efficacy of BTM in complex upper extremity wound reconstruction. The primary outcome measures were successful BTM integration and the proportion of wounds healed.

View Article and Find Full Text PDF

Background: Treatment of diabetes and its complications is a primary health care expense. Up to 25% of people with diabetes will develop diabetic foot ulcers (DFUs). Removable cast walker (RCW) boots commonly prescribed for DFU treatment, promote healing, and provide offloading and wound protection.

View Article and Find Full Text PDF

Objective: Angiogenesis is associated with angiogenic therapy and wound healing processes. It is important for anesthesiologists to understand the effects of perioperative and long-term use of anesthetics on angiogenesis. This study aimed to determine the effects of ketamine on in vitro angiogenesis: the proliferation of human umbilical vein endothelial cells (HUVEC) and normal human diploid fibroblasts (NHDF), HUVEC migration, and in vitro capillary tube formation in cocultured HUVEC and NHDF.

View Article and Find Full Text PDF

Aminopeptidase-Responsive NIR Photosensitizer for Precision Targeting and Eradication of Biofilms.

ACS Appl Mater Interfaces

December 2024

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

The emergence of resistance in represents a significant global health challenge, particularly due to the hurdle of effectively penetrating biofilms with antimicrobials. Moreover, the rise of antibiotic-resistant pathogens has driven the urgent need for developing innovative therapeutic approaches to overcome antibiotic resistance. Antibacterial phototherapy strategies have shown great potential for combating pathogens due to their broad-spectrum antimicrobial activity, spatiotemporal controllability, and relatively low rate of resistance emergence.

View Article and Find Full Text PDF

Wound healing can often be delayed due to non-favourable physiological conditions. Current treatment strategies have many limitations, and the development of novel therapeutic patches is urgently required. Herein, we have developed a hydrogel-based wound healing patch containing quercetin nanocrystals to enhance quercetin solubility, leading to sustained release and improved bioactivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!