Mutualistic networks are vital ecological and social systems shaped by adaptation and evolution. They involve bipartite cooperation via the exchange of goods or services between actors of different types. Empirical observations of mutualistic networks across genres and geographic conditions reveal correlated nested and modular patterns. Yet, the underlying mechanism for the network assembly remains unclear. We propose a niche-based adaptive mechanism where both nestedness and modularity emerge simultaneously as complementary facets of an optimal niche structure. Key dynamical properties are revealed at different timescales. Foremost, mutualism can either enhance or reduce the network stability, depending on competition intensity. Moreover, structural adaptations are asymmetric, exhibiting strong hysteresis in response to environmental change. Finally, at the evolutionary timescale we show that the adaptive mechanism plays a crucial role in preserving the distinctive patterns of mutualism under species invasions and extinctions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596068PMC
http://dx.doi.org/10.1038/s41467-020-19154-5DOI Listing

Publication Analysis

Top Keywords

mutualistic networks
12
adaptive mechanism
8
networks emerging
4
emerging adaptive
4
adaptive niche-based
4
niche-based interactions
4
interactions mutualistic
4
networks vital
4
vital ecological
4
ecological social
4

Similar Publications

Nitrogen (N) deposition from human activities leads to an imbalance in the N and phosphorus (P) ratios of natural ecosystems, which has a series of negative impacts on ecosystems. In this study, we used 16s rRNA sequencing technology to investigate the effect of the N-P supply ratio on the bulk soil (BS) and rhizosphere soil (RS) bacterial community of halophytes in coastal wetlands through manipulated field experiments. The response of soil bacterial communities to changing N and P ratios was influenced by plants.

View Article and Find Full Text PDF

Background: Bees rely on plants for nutrition and reproduction, making the preservation of natural areas crucial as pollinator reservoirs. Seasonal tropical dry forests are among the richest habitats for bees, but only 27% of their original extent remains in Mexico. In contrast, temperate forests harbor fewer bee species and face high deforestation rates, with 40% of their area converted to other land uses.

View Article and Find Full Text PDF

Root and mycorrhizal nutrient acquisition strategies in the succession of subtropical forests under N and P limitation.

BMC Plant Biol

January 2025

Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.

Background: Nutrient limitation is a universal phenomenon in terrestrial ecosystems. Root and mycorrhizal are critical to plant nutrient absorption in nutrient-limited ecosystems. However, how they are modified by N and P limitations with advancing vegetation successions in karst forests remains poorly understood.

View Article and Find Full Text PDF

Identification of a drought stress response module in tomato plants commonly induced by fungal endophytes that confer increased drought tolerance.

Plant Mol Biol

December 2024

Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain.

Global climate change exacerbates abiotic stresses, as drought, heat, and salt stresses are anticipated to increase significantly in the coming years. Plants coexist with a diverse range of microorganisms. Multiple inter-organismic relationships are known to confer benefits to plants, including growth promotion and enhanced tolerance to abiotic stresses.

View Article and Find Full Text PDF

Unlabelled: Due to global warming, the worldwide retreat of glaciers is causing changes in species diversity, community composition, and species interactions. However, the impact of glacier retreat on interaction diversity and ecological networks remains poorly understood. An integrative understanding of network dynamics may inform conservation actions that support biodiversity and ecosystem functioning after glacier extinction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!