Nanobiocatalysts were produced via immobilization of CalB lipase on polyurethane (PU) based nanoparticles and their application on the synthesis of important industrial products was evaluated. Nanoparticles of polyurethane functionalized with poly(ethylene glycol) (PU-PEG) were synthetized through miniemulsion polymerization and the addition of crosslinking agents were evaluated. The nanoparticles were employed as support for CalB and the kinetic parameters were reported. The performance of new biocatalysts was evaluated on the hydrolysis reaction of p-NPB and on the enantioselective hydrolysis of (R,S)-mandelic acid. The esterification reaction was evaluated on the production of ethyl esters of Omega-3. The effect of poly(ethylene glycol) molar mass (400, 4000 or 6000 Da)on the biocatalyst activity was also analyzed. The PU-PEG6000-CalB showed the highest value of the kinetic parameters, highlighting the high reaction rate. The addition of trehalose as crosslinking agent improved the thermal stability of the biocatalysts. PU-PEG400-CalB was the most active nanobiocatalyst, exhibiting a ethyl esters production of 43.72 and 16.83 mM.U using EPA and DHA, respectively. The nanobiocatalyst was also applied in enantiomeric resolution of mandelic acid, showing promising enantiomeric ratios. The results obtained in this work present alternative and sustainable routes for the synthesis of important compounds used on food and pharmaceutical industries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.10.179 | DOI Listing |
PLoS One
January 2025
Department of Sport Studies, Faculty of Education Studies, Universiti Putra Malaysia, Selangor, Malaysia.
Introduction: Mental fatigue, a psychobiological state induced by prolonged and sustained cognitive tasks, impairs both cognitive and physical performance. Several studies have investigated strategies to counteract mental fatigue. However, potential health risks and contextual restrictions often limit these strategies, which hinder their practical application.
View Article and Find Full Text PDFBiochemistry
January 2025
Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
CYP105A1 exhibits monooxygenase activity to a wide variety of structurally different substrates with regio- and stereospecificity, making its application range broad. Our previous studies have shown that CYP105A1 wild type and its variants metabolize 12 types of nonsteroidal anti-inflammatory drugs (NSAIDs). In particular, the R84A variant exhibited a high activity against many NSAIDs.
View Article and Find Full Text PDFArch Microbiol
January 2025
Tecnológico Nacional de México, Instituto Tecnológico de Morelia, 58120, Morelia, Mexico.
The metabolites gluconic acid, 5-ketogluconic acid, proline, and glutamic acid, produced by Pseudomonas reptilivora B-6bs, are industrially important, particularly in food and pharmaceutical sectors. However, producing these metabolites involves biotin supplementation to enhance yields, which is an expensive additive, and reducing its use can significantly lower production costs. Thus, This study aimed to enhance the production of gluconic acid, 5-ketogluconic acid, proline, and glutamic acid without biotin supplementation.
View Article and Find Full Text PDFNirmatrelvir/ritonavir is a novel drug combination authorized by the US Food and Drug Administration for the treatment of coronavirus disease 2019 (COVID-19). This report describes the case of a patient with a prior history of kidney transplantation who received nirmatrelvir/ritonavir. In this case, sirolimus use was successfully stopped before nirmatrelvir/ritonavir treatment, and the nirmatrelvir/ritonavir trough concentration was determined.
View Article and Find Full Text PDFFront Pharmacol
December 2024
School of Clinical Medical, Chengdu Medical College, Chengdu, China.
Apigenin (CHO, API) is a natural flavonoid widely found in vegetables, fruits, and plants such as celery, oranges, and chamomile. In recent years, API has attracted considerable attention as a dietary supplement due to its low toxicity, non-mutagenic properties and remarkable therapeutic efficacy in various diseases. In particular, evidence from a large number of preclinical studies suggests that API has promising effects in the prevention and treatment of a variety of liver diseases, including multifactorial liver injury, non-alcoholic fatty liver disease/non-alcoholic steatohepatitis, liver fibrosis and liver cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!