Wound healing is a complex, dynamic and difficult process. Much effort and attempt has been made to accelerate this process. The purpose of this study is to prepare nanoparticles loaded with vaccarin (VAC-NPS)hydrogel and evaluate its effect on promoting wound healing. In the present study, the physicochemical properties of VAC-NPS were characterized. Transmission electron microscopy (TEM) was used to observe the morphology of VAC-NPS. Human umbilical vein endothelial cells (HUVEC) was employed to assessment the biocompatibility of VAC-NPS in vitro. The wound healing function of VAC-NPS hydrogels was evaluated in the full-thickness dermal wound in a rat model. The results indicated that VAC-NPS was spherical like particles with uniform particle size distribution and no obvious aggregation with a diameter of (216.6 ± 10.1)nm. The loading capacity and encapsulation efficiency of VAC in the nanoparticles were (14.3 ± 1.2) % and (51.7 ± 1.7) % respectively. MTT assay demonstrated that the VAC-NPS had no cytotoxicity and could promote HUVEC proliferation and migration. In vivo results showed that VAC-NPS promotes wound healing, and the mechanism may be through up-regulating IL-1β and PDGF-BB, promoting angiogenesis. VAC-NPS might have a potential application value for the treatment of the wound healing and a promising performance in bio-medically relevant systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.10.182 | DOI Listing |
Mar Biotechnol (NY)
January 2025
Burn Research Center, Iran University of Medical Sciences, Tehran, Iran.
Burn wounds are challenging to treat due to considerable tissue damage and fluid loss. Creating wound dressings from natural and biological materials makes it possible to treat wounds and promote rapid epithelialization to speed healing and restore skin function. As a result, the ability of a collagen scaffold (Col) made from rainbow trout (Oncorhynchus mykiss) and putative bioactive phytochemical components from a Sargassum glaucescens (S.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China.
O-linked N-acetylglucosamine transferase (OGT)-catalyzed O-linked N-acetylglucosamine glycosylation (O-GlcNAcylation) is closely associated with diabetes progression. This study aims to investigate the mechanism of OGT in regulating endothelial dysfunction in gestational diabetes mellitus (GDM). Expressions of OGT, O-linked N-acetylglucosamine (O-GlcNAc), enhancer of zeste homolog 2 (EZH2), and HEK27me3 in human umbilical vein endothelial cells (HUVECs) and GDM-derived HUVECs (GDM-HUVECs) were assessed by western blot.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India.
Background: Vascular Dementia (VaD) is the second most prevalent cause of dementia, arising from the blockage of blood vessels in the brain. One event responsible for the blockage or narrowing of small blood vessels is transient ischemic attack (TIA), and these changes resolve within 24 hours in humans. The molecular mechanism underlying these changes in recovery in small vessels still needs to be investigated.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Institute of Brain Sciene, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Background: Amyloid-beta (Aβ) deposition is a key pathological characteristic of Alzheimer's disease (AD). Microglia serves as a crucial system responsible for clearing Aβ. Activated microglia migrate towards Aβ deposits, engulf them, and breakdown Aβ through cathepsins within the lysosome.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
John P. Hussman Institute for Human Genomics, Miller School of Medicine, Miami, FL, USA.
Background: We identified the missense variant Ser1038Cys (rs377155188) in the tetratricopeptide repeat domain 3 (TTC3) gene that segregate in a non-Hispanic white late onset Alzheimer disease (LOAD) family. This variant is predicted to be deleterious and extremely rare (MAF<0.01%).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!