Bacterial resistance is considered one of the most important public health problems of the century, due to the ability of bacteria to rapidly develop resistance mechanisms, which makes it difficult to treat infections, leading to a high rate of morbidity and mortality. Based on this, several options are being sought as an alternative to currently available treatments, with a particular focus on nanotechnology. Nanomaterials have important potential for use in medical interventions aimed at preventing, diagnosing and treating numerous diseases by directing the delivery of drugs. This review presents data on the use of polymeric nanoparticles having in vitro and in vivo activity against bacteria belonging to the Enterobacteriaceae family.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1381612826666201029095327 | DOI Listing |
J Mater Sci Mater Med
January 2025
Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.
Bone cement is commonly utilized to secure prosthetic joints in the body because of its robust fixation, stability, biocompatibility, and immediate load-bearing capability. However, issues such as loosening, leakage, and insufficient bioactivity can lead to its failure. Therefore, improving its mechanical, physical, and biological properties is crucial for enhancing its efficiency.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Laboratoire Softmat, UMR au CNRS no 5623, Université Paul Sabatier, F-31062 Toulouse, France.
Simulations on an ODE-based model shows that there are many common points between Viedma deracemization and chiral self-assemblies of achiral building blocks towards chiral nanoparticles. Both systems occur in a closed system with energy exchange but no matter exchange with the surroundings and show parallel reversible growth mechanisms which coexist with an irreversible cluster breaking (grinding). The various mechanisms of growth give rise to the formation of polymerization/depolymerization cycles while the consecutive transformation of achiral monomer into chiral cluster results into an indirect enantioselective autocatalysis.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of General Practice and Family Medicine, The Second Hospital of Jilin University, Changchun, 130000, People's Republic of China.
In the last few years, cellulose has garnered much interest for its application in drug delivery, especially in cancer therapy. It has special properties like biocompatibility, biodegradability, high porosity, and water permeability render it a good candidate for developing efficient carriers for anticancer agents. Cellulose based nanomaterials like cellulose nanofibers, bacterial cellulose, cellulose nanocrystals and microcrystalline cellulose as delivery vehicles for targeted drug delivery to cancer cells are reviewed.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy.
Purpose: Dimethyl fumarate (DMF), the first-line oral therapy for relapsing-remitting multiple sclerosis, is rapidly metabolized into monomethyl fumarate. The DMF oral administration provokes gastrointestinal discomfort causing treatment withdrawal. The present study aimed to develop an innovative formulation for DMF nasal administration.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Arar, Saudi Arabia.
Introduction: Rhein, a natural bioactive lipophilic compound with numerous pharmacological activities, faces limitations in clinical application due to poor aqueous solubility and low bioavailability. Thus, this study aimed to develop a rhein-loaded self-nano emulsifying drug delivery system (RL-SNEDDS) to improve solubility and bioavailability.
Methods: The RL-SNEDDS was prepared by aqueous titration method with eucalyptus oil (oil phase), tween 80 (surfactant), and PEG 400 (co-surfactant) and optimization was performed by 3 factorial design.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!