A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Innate Immune Signalling Pathways: Turning RIG-I Sensor Activation Against Cancer. | LitMetric

The Innate Immune Signalling Pathways: Turning RIG-I Sensor Activation Against Cancer.

Cancers (Basel)

Institute of Translational Pharmacology (IFT), Department of Biomedical Science, National Research Council (CNR), 00133 Rome, Italy.

Published: October 2020

Over the last 15 years, the ability to harness a patient's own immune system has led to significant progress in cancer therapy. For instance, immunotherapeutic strategies, including checkpoint inhibitors or adoptive cell therapy using chimeric antigen receptor T-cell (CAR-T), are specifically aimed at enhancing adaptive anti-tumour immunity. Several research groups demonstrated that adaptive anti-tumour immunity is highly sustained by innate immune responses. Host innate immunity provides the first line of defence and mediates recognition of danger signals through pattern recognition receptors (PRRs), such as cytosolic sensors of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular pattern (DAMP) signals. The retinoic acid-inducible gene I (RIG-I) is a cytosolic RNA helicase, which detects viral double-strand RNA and, once activated, triggers signalling pathways, converging on the production of type I interferons, proinflammatory cytokines, and programmed cell death. Approaches aimed at activating RIG-I within cancers are being explored as novel therapeutic treatments to generate an inflammatory tumour microenvironment and to facilitate cytotoxic T-cell cross-priming and infiltration. Here, we provide an overview of studies regarding the role of RIG-I signalling in the tumour microenvironment, and the most recent preclinical studies that employ RIG-I agonists. Lastly, we present a selection of clinical trials designed to prove the antitumour role of RIG I and that may result in improved therapeutic outcomes for cancer patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693898PMC
http://dx.doi.org/10.3390/cancers12113158DOI Listing

Publication Analysis

Top Keywords

innate immune
8
signalling pathways
8
adaptive anti-tumour
8
anti-tumour immunity
8
tumour microenvironment
8
rig-i
5
immune signalling
4
pathways turning
4
turning rig-i
4
rig-i sensor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!