Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Brain tumor is a severe cancer disease caused by uncontrollable and abnormal partitioning of cells. Recent progress in the field of deep learning has helped the health industry in Medical Imaging for Medical Diagnostic of many diseases. For Visual learning and Image Recognition, task CNN is the most prevalent and commonly used machine learning algorithm. Similarly, in our paper, we introduce the convolutional neural network (CNN) approach along with Data Augmentation and Image Processing to categorize brain MRI scan images into cancerous and non-cancerous. Using the transfer learning approach we compared the performance of our scratched CNN model with pre-trained VGG-16, ResNet-50, and Inception-v3 models. As the experiment is tested on a very small dataset but the experimental result shows that our model accuracy result is very effective and have very low complexity rate by achieving 100% accuracy, while VGG-16 achieved 96%, ResNet-50 achieved 89% and Inception-V3 achieved 75% accuracy. Our model requires very less computational power and has much better accuracy results as compared to other pre-trained models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2020328 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!